Kevin Doerschug

Recognizing and Managing Patient-Ventilator Asynchrony

38th Annual Respiratory Care Fall Seminar

October 18, 2018

Kevin Doerschug, MD, MS, FCCP
Professor
Medical Director, Medical Intensive Care Unit
University of Iowa Healthcare
Learning Objectives

Following the presentation, learners will

1. Recognize the role of volume-targeted ventilation in many critically ill patients
2. Recognize ventilator waveform patterns of asynchrony
3. Identify ventilator overdrive as a means to manage many types of asynchrony
Compliance

• P_{plat} and tidal volume intrinsically linked

• Compliance changes frequently because
 • Fluids
 • Inflammation
 • Position (incl CLRT)

• Changes in compliance cause
 • Change in TIDAL VOLUME in Pressure modes
 • Change in PRESSURE in volume modes
Volume Matters

- 861 patients
- Vt 6 cc/kg IBW vs 12 cc/kg IBW
- Mortality
 - 40%
 - 31%

ARDSNetwork. NEJM 342:1301, 2000
Which Pressures Matter?

- Components of P_{Peak}
 - PEEP
 - P_{elast}
 - $P_{\text{resistance}}$

- P_{plat}
 - $=PEEP + P_{\text{elast}}$ (i.e absence of flow)
 - Alveolar pressure
 - Lung stretch (injury)
 - Elevated in stiff lungs (ARDS, pneumonia, fibrosis)

- P_{res}
 - Related to flow NOT STRETCH
 - $=P_{\text{peak}} - P_{\text{plat}}$
 - Unrelated to alveolar pressure
 - Elevated obstructive lung disease, small ETTs, high flow

- $P_{\text{peak}} = 34$
- $PEEP = 8$
- $P_{\text{plat}} = 23$
- $P_{\text{res}} = 34 - 23 = 11$
- $P_{\text{elast}} = 23 - 8 = 15$
Low V_T is Beneficial even at Low P_{plat}

Data from ARDSnet Low Vt

Hagar DN, et.al: Am J Respir Crit Care Med 172:1241, 2005
Low V_t important in non ARDS

Neto, JAMA 2012;308(16):1651-59
Tidal Volume Matters

- Lower Tidal Volumes cause:
 - Less lung stretch
 - Less inflammation
 - Less lung injury in patients with shock, sepsis, post surgery...
 - Marked mortality benefit

- Is 6cc/kg IBW the best?
 - 5cc/kg or 7cc/kg? — who knows?
 - 6-8cc/kg if P_{plat} is low? — don’t think so

- Volume Control Controls Volumes

Hagar DN, et.al: Am J Respir Crit Care Med 172:1241, 2005
ARDS: Starting Ventilation

- Tidal Volume
 - 6cc/kg IBW
 - IBW = 2.3kg * (height - 60) plus:
 - 50 for men
 - 45.5 for women

- PEEP

- Respiratory Rate
 - 29 +/- 7

- FiO2

- Insp Time
 - Flow 60 L/min
 - Why?
Is this Waveform Optimized?
Assume correct Vt, PEEP, FiO2
Passive or active?
Passive or active?
Passive or active?
Active

What is the flow?

"Normal Contour"
“Normal Contour”
Ventilator Synchrony

• Asynchrony
 • Absence or lack of concurrence in time—Merriam-Webster Dictionary
 • Often a miss-match between drive and delivery
 • Increases Work of Breathing

• 3 types of asynchrony
 • Trigger
 • Flow
 • Cycle
Excessive Work of Breathing

• Results in:
 • Discomfort
 • Lactic acidosis (increased drive)
 • Increased bloodflow to diaphragm
 • Diaphragm dysfunction
 • Injurious inflation
Work of Breathing Matters

- Diaphragm dysfunction
 - Electrical activity: diaphragm thickness (T_{di})
 - Delta T_{di} associated with outcomes
 - No change good
 - Decreased T_{di} bad
 - INCREASED T_{di} also bad
- Excessive respiratory effort causes diaphragm dysfunction that is associated with outcome

Goligher, Am J Resp Crit Care Med 2018;197(2);204-13
Work of Breathing Matters, part 2

Animal Model:
- Spontaneous effort
 - dependent regional P_{pl} more negative
 - Esophageal pressure dependent P_{pl}
 - Pendelluft: alveolar air moves from nondependent to dependent regions
- Injured, but not healthy lungs

Human with ARDS
- Spontaneous breath distributed toward the dependent regions more so than during passive breath

Yoshida, Am J Resp Crit Care Med 2017;196(5);590-601
Respiratory Drive

- Complex
 - Chemoreceptors
 - Stretch
 - Inflammation
 - Pain/anxiety/fear
 - Metabolic demands
- Excessive drive exists in
- Imbalance leads to asynchrony
- Normal gas exchange does not exclude asynchrony
- **Attempts to normalize gas exchange may worsen asynchrony**

Mitigating Asynchrony

- Change the Patient
 - Sedation
 - Paralysis
 - May not be sufficient
 - May have downsides

- Change the Ventilator
 - Overdrive
 - VE commonly set too low
 - Increase RR and Vt
 - May not be sufficient
 - Conflicting goals
 - Match Flow
 - Match Cycle

Respiratory Drive
Passive or Active?
<table>
<thead>
<tr>
<th>Volume Control</th>
<th>Admit patient</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. hold active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 cmH₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 1/min BTPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 ml BTPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ conc.</td>
<td>PEEP</td>
<td>Resp. Rate</td>
</tr>
<tr>
<td>40</td>
<td>5 cmH₂O</td>
<td>8 b/min</td>
</tr>
<tr>
<td>21</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Status: 0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEEP: 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C static: 7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E: 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C dyn: 5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rl: 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv: 894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V̇O₂: 4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: 0.1 cmH₂O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tc: 0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next page</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trigger Asynchrony

- Fail to deliver a breath despite effort
- Negative Ppl insufficient for alveolar pressure and PEEP
- Up to 25% of patients
 - Obstructive lung diseases
 - Obesity
- Preceded by
 - Larger breaths
 - Shorter expiratory times
Trigger Asynchrony

- P_{pl} inadequate for elevated P_{alv}
- Address with:
 - Decrease P_{alv}
 - Increase set PEEP
 - Sedation
 - NAVA mode
 - Acceptance

![Diagram showing lung ventilation with PEEP = 15, $P_{alv} = 15$, $P_{pl} = 1$, and elastic recoil.](image)
Unknown
Passive or active?
What is the flow?
Good enough?
Flow Asynchrony

- Demand >> Delivery
- Scalloped Pressure curve
- Can occur at any Q
- Common if Q < 50 L/min
- Who cares?
- Address with
 - Increase flow
 - overdrive
Concepts of Flow

• ~60 L/min for most critically ill, assess if right
• Q < 50 L/min rarely tolerated
• Flow too low risks
 • Flow dysynchrony, increased work of breathing
 • autoPEEP
• Flow too high risks
 • Tachypnea
 • High P_{peak} (who cares?)
Mode and Work of Breathing

- 14 pts, randomized, cross-over
- WOB: pulm mechanics (Bicore CP-100)
- Vt target 6.4 mL/kg
- Vt increased in PC and PRVC
- WOB increased in PC and PRVC
- Ppeak increased VC (who cares?)

END-Flow in PRVC and PC << 60 L/m

| Table 2. Differences in Patient Work of Breathing and Other Variables During Lung-Protective Ventilation Using Volume-Regulated Modes and Pressure-Regulated Modes |
|---------------------------------|-----------------|-----------------|
| | PRVC | PCV | VCV |
| WOB (J/L) | 1.35 ± 0.60 | 1.27 ± 0.58 | 1.09 ± 0.59 |
| PTP (cm H₂O/s/min) | 229 ± 116 | 195 ± 94 | 180 ± 112 |
| W (J/min) | 16.4 ± 10.7 | 15.7 ± 9.0 | 13.2 ± 8.9 |
| P_{D1} (cm H₂O) | 5.5 ± 3.1 | 4.4 ± 2.1 | 4.8 ± 3.1 |
| Δ P_{es} (cm H₂O) | 17.0 ± 5.9 | 14.8 ± 4.1 | 14.6 ± 6.3 |
| V_T (mL) | 418 ± 83 | 436 ± 106 | 398 ± 79 |
| V_T (mL/kg) | 6.9 ± 1.1 | 7.2 ± 1.4 | 6.5 ± 0.7 |
| V_{I} (L/min) | 57 ± 14* | 61 ± 16 | 76 ± 5 |
| V_E (L/min) | 11.6 ± 3.3 | 12.3 ± 3.6 | 11.3 ± 2.6 |
| T_I (s) | 0.63 ± 0.08 | 0.64 ± 0.09 | 0.62 ± 0.09† |
| f (breaths/min) | 28 ± 7 | 28 ± 7 | 29 ± 6 |
| P_{ETCO₂} (mm Hg) | 42 ± 6 | 41 ± 6 | 42 ± 6 |
| Peak P_{aw} (cm H₂O) | 22 ± 9* | 23 ± 8* | 34 ± 13 |
| PEEP (cm H₂O) | 7.7 ± 2.6 | 7.7 ± 2.9 | 7.8 ± 3.2 |
| PEEPi (cm H₂O) | 2.0 ± 1.4 | 1.6 ± 1.5 | 2.6 ± 3.9 |

ARDS, Proned, Paralyzed

- What abnormalities do you see?
- Passive or Active?
- What is the flow?
- Why is the Ppeak high?
- Is exp phase normal?
Influenza, MRSA pneumonia
Cycle Asynchrony

• Discrepancy re: change from Insp-Exp
• Neural time const. > i-Time
• Persistent insp effort
Cycle Asynchrony

• Extreme form: Stacked Breaths
 • $V_t \times 1.6 \times \text{set } V_t$
 • 10.1 cc/kg IBW
 • > 6 SB/min * 12 hours 45% of patients

• Risk factor is Low V_t

• Asynchrony more common in VC ventilation
 • WOB if unchecked
 • Asynchrony (unconscious) = Discomfort (conscious)

Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury
Mark C. Pohlman, MD; Kathryn E. McCallister, BS; William D. Schweickert, MD; Anne S. Pohlman, MSN; Celina P. Nigos, BSN; Jerry A. Krishnan, MD, PhD; Jeff T. Charbeneau, MS; Brian K. Gehlback, MD; John P. Kress, MD; Jesse B. Hall, MD

Pohlman, Crit Care Med 2008;36:3019-23
Responses to Cycle Asynchrony

- Adjust the Patient
 - Sedation
 - Paralytics
- Adjust the Ventilator
 - Increase Vt
 - Change to Pressure Support
 - Increase insp time

Figueroa-Casas, Ann Am Thorac Soc 2016;133:2207
Adjust Ventilator, not the patient

- Asynchrony (subconscious) less responsive to sedation/analgesia
- Vent Changes:
 - Change mode
 - Change iTime

Chanques, et al, Critical Care Medicine, 2013; 41(9):2177-2187
Adjust Ventilator, not Patient

Add Insp Pause in Volume-Control Ventilation
- Asynchrony 50%-0%
- Vt 800cc-400cc

Switch to Pressure Supprt ventilation
- Asynchrony 50%-0%
- Vt 800cc-550cc
Adjust Ventilator, not Patient

- Changing to PSV lead to increase in Vt despite attempts to lower pressure

<table>
<thead>
<tr>
<th></th>
<th>Δ ACV to PSV</th>
<th>Insp Time</th>
<th>↑ Vt</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Airway Pressure</td>
<td>-2 [4-0]</td>
<td>+1 [0-1]</td>
<td>+1</td>
<td>0.02</td>
</tr>
<tr>
<td>Vt ml/kg PBW</td>
<td>+4 [2-6]</td>
<td>0 [0-0]</td>
<td>+1</td>
<td><0.001</td>
</tr>
<tr>
<td>Insp Time (s)</td>
<td>+0.3 [2.6]</td>
<td>+0.6 [5.6]</td>
<td>+0.1</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Chanques, et al, Critical Care Medicine, 2013; 41(9):2177-2187
Inspiratory Pause

• .1-.2 seconds
• Beware of falsely elevated P_{plat} when short
• Beware autoPEEP
Influenza, MRSA pneumonia, part 2

ABG: 7.32 / 28 / 63

What do you see?
What would you do?

Make only 1 change!
Influenza, MRSA pneumonia, part 3
50 YO woman with encephalopathy

- Intubated for airway protection
- 6.0 ETT, kinked
Another influenza
Change in Flow, Asynchrony, and Injurious Vt
Conclusions

• Asynchrony IS increased work of breathing
• Asynchrony (esp Flow) can contribute to lung injury
• Over-reliance on ABG can distract, confuse, and frustrate
• Waveforms provide more useful information than ABG
• Vent adjustments fix asynchrony better than sedation