Spinal Cord Injury

A Comparison on Animal Models

K Stoner & N Grosland
Weight Drop Injury

• Not all energy transmitted to cord
 • Weight-height combination (Dohrmann 1976)
Weight Drop Injury

- Not all energy transmitted to cord
 - Weight-height combination (Dohrmann 1976)
 - Affects of device mass, materials, support
Weight Drop Injury

• Not all energy transmitted to cord
 • Weight-height combination (Dohrmann 1976)
 • Affects of device mass, materials, support
 • Cord deformation

Less Stiff > Deform
More Stiff

Impulse vs slow impact?
Duration of load?
Requirement for Model

• Correlate Load/Impulse/Pressure
 • Lesion volume
 • Spinal electropotential
 • Behavior of animal

• Possible with weight drop HOWEVER uncontrolled
Compression-Injury

- Balloon catheter device
 - Inflated epidurally or subdurally

Baydin 2007
Compression-Injury

• Pressure and volume of balloon tightly controlled
 • Impulse or slow inflation

Rats rapid subdural injury: 5 normal gait, 0 no movement
Martin 1992
Compression-Injury

- Pressure and volume of balloon tightly controlled
 - Impulse or slow inflation
- SEPs monitored before and after

Rabbit, epidural, slow inflation 40-60psi 15 min
Baydin 2007
Compression-Injury

• Pressure and volume of balloon tightly controlled
 • Impulse or slow inflation
• SEPs monitored before and after
• Deformation of cord – imaging with contrast agent

Martin 1992
Compression-Injury

• Large Animal Models Successful
 • Rabbit – Baydin 2007
 • Dog - Tarlov 1953
 • Rhesus Monkey – Tator 1973

Rhesus Monkey
slow inflation 400
mmHg 5min:
0 complete
paraplegia, 4 normal
Tator 1973
Compression-Injury

- Rat treadmill training possible

Rapid inflation
20ul 5 min: 0
no movement,
12 normal
Multon 2003
Cost Comparison

<table>
<thead>
<tr>
<th>Drop Weight</th>
<th>Potentiometer</th>
<th>Compression Catheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 9237 Module</td>
<td>NI 9201 Module</td>
<td>Ana-Box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI Chassis</td>
<td>$771</td>
<td>NE 1010 Syringe Pump</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LabView Software</td>
<td>$1,035</td>
<td>Pressure Sensor</td>
</tr>
<tr>
<td>LoadCell</td>
<td>$600</td>
<td></td>
</tr>
<tr>
<td>Laptop</td>
<td>$1,000</td>
<td></td>
</tr>
<tr>
<td>Machining</td>
<td>$1,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$5,852</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5,514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,529</td>
</tr>
</tbody>
</table>

If High Speed camera add ~$15,000 to buy
Overall

Weight Drop
- Used mostly in small animals
- Load-injury response hard to control
- Data collection complicated
- Surgery difficult
- Expensive

Compression
- Used in small and large animals
- Pressure well controlled
- Data collection simple
- Surgery easy
- Inexpensive
<table>
<thead>
<tr>
<th>Weight Drop</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Used mostly in small animals</td>
<td>• Used in small and large animals</td>
</tr>
<tr>
<td>• Load-injury response hard to</td>
<td>• Pressure well controlled</td>
</tr>
<tr>
<td>control</td>
<td>• Data collection simple</td>
</tr>
<tr>
<td>• Data collection complicated</td>
<td>• Surgery easy</td>
</tr>
<tr>
<td>• Surgery difficult</td>
<td>• Inexpensive</td>
</tr>
<tr>
<td>• Expensive</td>
<td></td>
</tr>
</tbody>
</table>