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Editorial Focus

Unlocking the role of the superior temporal gyrus for speech
sound categorization

Mitchell Steinschneider
Department of Neurology, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, New York

THE ABILITY TO ALMOST EFFORTLESSLY encode the phonemic
content of running speech is a remarkable capacity of the
human brain. This remarkable capacity is emphasized by the
brain’s maintenance of phonemic stability despite pronounced
variability in the spectral and temporal characteristics of a
given phoneme and a phoneme’s frequent acoustic overlap
with other speech sounds. For instance, vowels map out into
discrete regions of acoustic space when the second formant
frequency (F2) is plotted against the first formant frequency
(F1). However, F2 and F1 values for a given vowel vary widely
across speakers, and distributions of F1 vs. F2 values for one
vowel often overlap significantly with those from others (e.g.,
/ae/ as in “head” and /�/ as in “hayed”) (Hillenbrand et al.
1995). In total, a whole host of sources, including a dynamic
environmental background, increase variability and diminish
reliable mapping of phonemes based on consistently available
acoustic cues. Instead of this one-to-one assignment of specific
acoustic cues with a given phoneme, the brain’s task must be
one of rapid categorization, placing acoustically variable
speech sounds into discrete phonemic categories (see Holt and
Lotto 2010 for review).

The neural network underlying phonemic categorization is
slowly being clarified. Emboldened by behavioral studies dem-
onstrating that many parallels exist between phonemic percep-
tion as seen in humans and those observed in experimental
animals (Kuhl 1986; Kluender et al. 1987; Sinnott and Brown
1997), multiple investigations have examined speech process-
ing in primary auditory cortex (A1) (Steinschneider et al. 2003;
Engineer et al. 2008; Mesgarani et al. 2008). In general, A1 can
best be described as performing relatively fine-grained analy-
ses of the speech signal that facilitates, but not determines,
phonemic categorization (Rauschecker and Scott 2009). These
findings, obtained in experimental animals, have been sup-
ported by results obtained through direct recordings within
more posterior medial portions of Heschl’s gyrus, the putative
location of human primary auditory cortex (Steinschneider
et al. 2005; Bitterman et al. 2008; Nourski et al. 2009).

Beyond A1, the posterior lateral region of the superior
temporal gyrus (PLST) represents an intermediate stage of
speech processing that is envisioned to play a fundamental role
in phonemic processing and categorization (Poeppel et al.
2008; Hickok 2009; Price 2010). Electrical stimulation of the
posterior medial portion of Heschl’s gyrus elicits very short
latency responses in this area, suggesting direct connects with
primary auditory cortex (Brugge et al. 2003). Potential analogs
of this region in the macaque monkey include the portion of
auditory cortex termed the anterolateral (AL) belt region

(Hackett 2007). Previous studies have shown that neurons in
this region are both highly responsive to conspecific vocaliza-
tions and show specificity in their responses to vocalization
type (Tian et al. 2001; Russ et al. 2008a). These and other
physiological studies, coupled to known anatomical connec-
tions of AL, indicate that this region is an important, interme-
diate node in the processing stream encoding species-specific
vocalizations, and might thereby serve as a useful model area
for investigating phonemic encoding mechanisms (Romanski
and Averbeck 2009).

Recently, Tsunada et al. (2011) provided evidence that AL is
a highly relevant model area for examining the categorization
process of phonemes. Two male macaque monkeys were
trained to make a leftward eye saccade when two sequential
speech sounds were perceived as the same, and a rightward eye
saccade when the two syllables were perceived as different.
The speech sounds were the syllables /bad/ and /dad/ recorded
from a female speaker. These prototypic syllables were se-
quentially morphed such that /b/ at syllable onset systemati-
cally took on the acoustic characteristics of /d/ in 20% incre-
ments, with an additional syllable placed at the midpoint (50%)
of acoustic differences. Prototypic and intermediate syllables
were presented to the animals while they performed the match-
to-category task described above and while the investigators
recorded from single neurons in area AL.

Excellent categorization was obtained in the behavioral perfor-
mance of the animals. For example, when the first of the sequen-
tially presented syllables (reference syllable) was a /bad/ that was
40% different from the prototype, a 20% acoustic change towards
the prototype /bad/ in the second of the sequentially presented
syllables (test syllable) evoked a reliable behavioral response of
“same” in the two monkeys, whereas the identical 20% acoustic
change in the other direction (towards the /dad/ prototype) reliably
elicited a behavioral response of “different” in the animals. Thus,
a clear categorical-like boundary at the 50% midpoint syllable was
obtained (Kuhl 1986).

Categorical-like patterns in neural firing were assessed by
computing a category index (CI) on a neuron-by-neuron basis.
This index represented the difference in firing rates between a
“between-category difference” (BCD) and a “within-category
difference” (WCD) divided by their sum. The WCD was the
average of the absolute differences between test syllable firing
rates of morph pairs that resided on the same side of the
perceptual boundary, while the BCD represented the average
of the absolute differences between test syllable firing rates of
equivalent morph differences, but when the syllables resided
on opposite sides of the perceptual boundary. For example,
averaged CIs included the comparison of WCD firing rate
differences between the 20% and 40% morphs averaged with
the 60% and 80% morphs (both 20% differences but residing
on the same perceptual boundary side), and the BCD firing rate

Address for reprint requests and other correspondence: M. Steinschneider,
Dept. of Neurology, Albert Einstein College of Medicine, Rose F. Kennedy
Center, Rm. 322, 1300 Morris Park Ave., Bronx, NY 10461 (e-mail:
mitchell.steinschneider@einstein.yu.edu).

J Neurophysiol 105: 2631–2633, 2011.
doi:10.1152/jn.00238.2011.

26310022-3077/11 Copyright © 2011 the American Physiological Societywww.jn.org

on June 3, 2014
D

ow
nloaded from

 



differences between the 40% and 60% morphs (20% difference
now crosses the perceptual boundary). CI values greater than 0
indicate neural responses that respected the categorical bound-
ary. Measurements were taken incrementally in 5-ms bins to
assess the temporal dynamics of the responses.

Neural responses comparing the activity evoked by syllables
with equal acoustic differences, but which either straddled or
remained on the same side of the perceptual boundary, showed
significant “categorical-like” behavior. The CI was consistently
greater than 0 over the time span of the syllables. Categorical-like
activity was rapid, with two peaks occurring at �100 and 200 ms
after stimulus onset. In contrast, the authors demonstrated through
use of several computational methods that the activity in AL was
not related to decision choice. These findings contrast with earlier
works by Tsunada et al. (2011) using identical stimuli, which
identified a role for an auditory-responsive region of the ventral
prefrontal cortex in the behavioral decisions made by the monkeys
(Russ et al. 2008b; Lee et al. 2009).

Findings in AL of the monkey complement human intracra-
nial and functional neuroimaging studies demonstrating cate-
gorical-like speech-evoked activity in PLST. In the most di-
rectly related paper, Chang and colleagues (2010) linearly
morphed the syllables /ba/, /da/, and /ga/ by parametrically
modifying the starting frequency of F2 in 14 equal steps.
Categorical boundaries were perceptually identified and com-
pared with neural activity concurrently recorded from subdural
grid electrodes placed over PLST. Neural responses within a
latency range of 110–150 ms, as measured by the amplitude
and distribution of auditory-evoked potentials, physiologically
clustered in a distributed but categorical-like manner that
paralleled the perceptual categorization. Thus, neural response
distributions could accurately predict the perceptual category
of the consonants and were not simply based on acoustic
differences across the syllables. Another intracranial study of
PLST found that in the 100–150 ms time frame, differences in
the amplitude of high-gamma activity elicited by the voiced
syllables /ba/, /da/, and /ga/ could predict differences in the
responses elicited by their unvoiced counterparts /pa/, /ta/, and
/ka/ (Steinschneider et al. 2011). Thus, despite differences in
the voice onset time (VOT) of the consonants and their corre-
sponding acoustic correlates, responses reflected the place of
articulation of the stop consonants. In parallel, the VOT of the
syllables were categorically represented in the high-gamma
activity despite differences in the consonant place of articula-
tion. By manipulating the signal-to-noise ratio of /ba/ and /da/
using varying levels of white noise, Binder and colleagues
(2004) modulated the difficulty of syllable discrimination from
an easy task to one where subjects performed at chance. Brain
regions showing an enhanced BOLD signal specifically related
to the accuracy of discrimination included PLST and the
adjacent anterior lateral portion of Heschl’s gyrus bilaterally.
In contrast, activity related to behavioral reaction time, a
measure of decision choice, was localized to the inferior frontal
regions bilaterally.

While these studies strongly support the role of the lateral
superior temporal gyrus in speech categorization, many ques-
tions remain. For instance, the mechanisms by which AL in
monkeys and PLST in humans shape categorical-like activity is
unknown. Both areas integrate convergent input from tonoto-
pically organized core auditory cortex (Rauschecker and Tian
2004). Thus, it is reasonable to suggest that unique, distributed

patterns of activity respecting the differential spectral content
of the speech sounds promote categorical-like responses ob-
served in AL and PLST (Obleser et al. 2007; Leaver and
Rauschecker 2010). Integration with inputs from cells in A1
encoding a phoneme’s spectral bandwidth or temporal charac-
teristics would allow multidimensional scaling of the neural
activity and further enhance phonemic categorization (Mesga-
rani et al. 2008; Leaver and Rauschecker 2010). The studies by
Tsunada et al. (2011), Chang et al. (2010), and Steinschneider
et al. (2011) did not examine if the categorical-like activity
could be partially explained by differential selectivity to un-
derlying acoustic attributes of the speech sounds, and thus this
issue remains undetermined. Likewise, the roles of learning
and neural plasticity in shaping categorical-like activity in AL
and PLST are also open questions (Ohl and Scheich 2005; Fritz
et al. 2007). The latter is especially relevant for language-
learning in the young (Kuhl 2010), and it is exciting that future
studies will undoubtedly build on the model system reported by
Tsunada and colleagues (2011) to address these high impact
concerns.
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