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Abstract

Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain
unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g.,
identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral
temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface
in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions.
Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in
ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in
ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by
power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding
performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information
was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral
temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in
ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was
highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior
decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face
representation of invariant and changeable aspects: information about both face attributes was better decoded from a
single region in the middle fusiform gyrus.

Citation: Tsuchiya N, Kawasaki H, Oya H, Howard MA III, Adolphs R (2008) Decoding Face Information in Time, Frequency and Space from Direct Intracranial
Recordings of the Human Brain. PLoS ONE 3(12): e3892. doi:10.1371/journal.pone.0003892

Editor: Jan Lauwereyns, Victoria University of Wellington, New Zealand

Received October 14, 2008; Accepted November 6, 2008; Published December 9, 2008

Copyright: � 2008 Tsuchiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a fellowship from the Japan Society for the Promotion of Science (N.T.) and grants from NIH (R03 MH070497-01A2 to H.K.;
R01 DC004290-06 to M.H.), the James S. McDonnell Foundation (R.A.) and the Gordon and Betty Moore Foundation (R.A.). The funders had no role in study design,
data collection and analysis, decision to publish or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: naotsu@gmail.com

. These authors contributed equally to this work.

Introduction

Faces are processed by a relatively dedicated but anatomically

distributed system. This proposition has received strong conver-

gent support from intracranial recordings in humans [1–5,6,7,8] as

well as from a large number of imaging studies [9–12], scalp EEG

[5,13–17] and MEG studies [18,19], in addition to lesion studies in

humans [20,21] and neurophysiological studies in monkeys [22–

25]. While debates about the modularity of face processing

continue [26,27] there is consensus in the notion of a face-

processing system that encompasses specific sectors of temporal

visual cortex.

Distinct facial attributes, such as emotional expression, gender,

and identity, are extracted through this face processing system in

partly segregated functional streams [28–31]. In particular, it is

thought that while static aspects of a face, such as its gender and

identity, are encoded primarily in the ventral temporal regions,

dynamic information, such as emotional expression, depends on

the lateral and superior regions in the superior temporal sulcus and

gyrus [9,24,25,28]. This functional division of labor also meshes

well with a dominant and influential model of face processing,

which argues that faces need to be identified regardless of their

expression, and that emotional expressions must often be

recognized across different identities. Based in large part on this

idea as well as behavioral data, the model proposes that identity

and emotional expression information are processed by separate

systems [32]. Recently, functional imaging data has buttressed this

model, suggesting that invariant aspects of faces, including

identity, are represented in the fusiform face area (FFA) [10,33],

in the ventral temporal cortex, while changeable aspects of faces,

including emotional expressions, are represented in regions

around the superior temporal sulcus (STS) [28]. However, a

recent update to this model argues that there is early common

processing of invariant and changeable facial attributes within the

ventral temporal cortex, whose outputs are then conveyed to

multiple cortical regions for further processing of distinct attributes
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[30,34]. Given these alternative hypotheses, it is of special interest

to contrast the information represented within the ventral

temporal cortex with that represented in the lateral temporal

cortex, and to examine the issue at a more precise resolution in

time and frequency.

Just as information about faces is spatially distributed across

cortical sites [9,11,12,22,28], faces are processed at various

temporal scales. Event-related potentials (ERP) measured by scalp

EEG and MEG have shown that the visual system classifies a

stimulus category rapidly within around 100 msec based on the

visual characteristics of the input [35,36]. Faces, in particular,

evoke activity in the fusiform gyri at around 170 msec, reflecting

more detailed processing about various aspects of faces [1–

3,5,8,13–19]. Further face processing includes cognitive and

emotional evaluation, linking conceptual knowledge signaled by

the faces. Such later face processing would involve many

subcortical structures such as amygdala, basal ganglia, hypothal-

amus, brain stem, as well as cortical areas such as orbitofrontal,

somatosensory, and insular cortices [7,31]. These prior findings

leave open several important questions: Exactly what aspect of

faces is encoded at early and at late latencies? Which regions of

cortex participate in such encoding? And how does information

flow from one region to another within the network?

The spatiotemporal complexity of face processing poses

methodological difficulties in obtaining rich descriptions of how,

and what point in time, different regions represent facial

information. Moderately good spatial resolution and very wide

field-of-view can be attained using fMRI, yet temporal resolution

is limited to the timescale of seconds. Millisecond temporal

resolution obtained using scalp EEG and MEG, on the other

hand, is limited in terms of spatial resolution. Although direct

single-unit recordings offer the best possible spatio-temporal

resolution in principle, this technique suffers from an extremely

narrow anatomical field-of-view together with very rare opportu-

nities to obtain such recordings in humans [37–40]. Most

importantly, none of these approaches provides a wide bandwidth

such that different frequency components of processing could be

adequately examined. Arguably the best combination of large

anatomical field-of-view, good spatial resolution, excellent tempo-

ral resolution, and wide frequency bandwidth, is afforded by field

potentials, which can be recorded in awake neurosurgical subjects

[1–4,6–8,41–44].

To take a closer look at the face processing system in space, time

and across frequency bands, we recorded intracranial multi-

channel electrocorticograms (ECoG) from 9 subjects, who were

performing a discrimination task on static and dynamic face

stimuli (Figure 1). We analyzed the ECoG using a time-frequency

decomposition. Time-frequency analyses allow much better

preservation of information than the conventional event-related

potential (ERP) of the raw ECoG (Figure S1 and S2), yet also

introduce three large challenges. First, the data are high-

dimensional (amplitude values defined at different time points at

different frequencies in many channel locations). Second, the

many concurrent recording channels require statistical corrections

for multiple comparisons that severely limit statistical power. And

third, inter-subject variation in electrode locations and the most

responsive frequency ranges makes population-level inferences

problematic, since it is unclear how to pool data across multiple

subjects.

To address these problems, we applied a decoding approach to

our time-frequency decomposed data. For example, combining

the data across channels and frequencies within a subject, we can

assess when information for emotion discrimination becomes

available, effectively reducing the dimensions of the data and

alleviating the multiple comparison problem. An optimal combi-

nation across channels blurs the exact locations of electrodes,

solving the problem of inter-subject variation in sensitive electrode

location and responsive frequencies.

Using this decoding approach, we were able to compare

information processing in the ventral and the lateral temporal

cortex. We found that higher decoding accuracy was obtained in

the ventral than the lateral temporal cortex when we tried to

discriminate faces from checkerboard patterns and fearful from

happy expressions. Decoding time-frequency maps revealed

critical frequency bands of 50–150 Hz for discrimination of faces

from checkerboards not only when the stimuli were static, but also

when the stimuli were morphing; in both cases, the decoding

accuracy was better in the ventral than the lateral temporal cortex,

consistent with a hypothesis arguing for early common face

processing in the ventral temporal cortex. Further, emotion

decoding was possible from 60–150 Hz and below 30 Hz, and

better and faster in the ventral than the lateral temporal cortex.

Results

Behavioral results
We recorded electrophysiological responses from nine neuro-

surgical subjects by showing them either face or checkerboard

stimuli and having them perform a three-alternative forced choice

task on the stimuli by pressing a button (Figure 1a). In a given

session of 200 trials, the three alternatives were either [1, happy; 2,

other; 3, fear] or [1, woman; 2, other; 3, man]. We call a session

with the former alternatives an ‘‘emotion discrimination session’’

and that with the latter a ‘‘gender discrimination session’’. In any

session, we randomly interleaved checkerboard stimuli in 40 trials.

In these control trials, we instructed subjects to choose the

alternative ‘‘other’’ to indicate the stimulus was not a face. For the

rest of the 160 trials, we presented either a male or a female face

(80 trials each) whose expression was neutral. After 1 second, we

morphed the facial expression into either happy or fear over

0.5 seconds (40 trials each for male/happy, male/fear, female/

happy, and female/fear). For those trials, we instructed subjects to

choose the alternative that best described the stimulus. Behavioral

responses were obtained in 19 of 22 sessions (3800 trials in total).

The emotion and gender discrimination accuracy was 86.765.8%

and 95.362.0% correct, respectively (mean+2s.e.m.), which were

not significantly different (p.0.5).

ERP and spectrogram analysis
We recorded field potentials from subdural electrodes that

covered the ventral and the lateral temporal cortex (Fig. 1B–E).

Before proceeding into our novel decoding approaches, we first

describe an example of the results from more conventional ERP

and spectrogram analyses. In Figure S1 and S2, we show the

results from two responsive electrodes in the ventral temporal

cortex (data from the first session for subject 153; for the locations

of electrode 74 and 75, see Figure S3).

First, by averaging the raw field potentials in the time domain,

we carried out an event-related potential (ERP) analysis (Figure

S1A and S2A). At the abrupt onset of the static stimuli (t = 0 sec),

field potentials were evoked in a stimulus-locked manner, resulting

in larger positive or negative deflections to faces than to

checkerboards at around 150–200 msec in many electrodes [1–

4]. For the exemplar electrodes, t-scores from two-tailed t-tests

(comparing face.checkerboard) exceeded t.6 (Figure S1B, red),

t,212 and t.14 (Figure S2B, red) around 200 msec from the

onset of the static stimuli (uncorrected for multiple comparisons).

In contrast, we rarely found such a clear ERP during the time
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interval of our dynamic emotion morph period (t = 1–1.5 sec).

Most likely, because the stimuli were morphed smoothly over

500 msec, field potentials were not locked to the onset of the

morph. As a result, we found very few ERPs (Figure S1A and S2A)

that discriminated dynamic facial morphs from dynamic check-

erboard movies (Figure S1B and S2B, red). In particular, we

almost never found any strong ERP that discriminated fearful

from happy expressions during the morph period (Figure S1B and

S2B, blue).

Second, we estimated the event-related power spectrogram of

the ECoG for each trial using a multi-taper spectral analysis [5,6]

and obtained the average of the spectrograms for each condition

(Figure S1C–E and S2C–E). The multi-taper method involves the

use of multiple data tapers (i.e., the prolate spheroidal Slepian

functions) for spectral estimation, which stabilizes the estimate of

the power spectrum over short segments of possibly non-stationary

data, suited for an analysis of intracranial EEG. The estimated

spectrograms showed well-known 1/f power distributions. In

Figure 1. Experimental Paradigm. A We presented three kinds of morphing stimuli; 1) neutral to happy (80 trials), 2) neutral to fear (80 trials), 3)
radial checkerboard (40 trials), the order of which was randomized within a session of 200 trials. A trial started with the baseline plaid pattern
(21,t,0). At t = 0, either a neutral face or a checkerboard was presented. At t = 1, the face started to morph into either fearful or happy, or the
checkerboard expanded or contracted. After t.1.5, the stimuli remained frozen and a response was prompted at t = 2.5. Subjects performed either an
emotion- or a gender- discrimination task with three alternatives (see main text) in a given session. 9 subjects were studied in 22 sessions. B and C
Distribution of the electrodes in the ventral (B) and the lateral (C) cortex. The electrode placement for each subject is shown with a different symbol
and color, superimposed on one representative subject’s brain surface. D and E The electrode density map, representing the frequency of the
electrode placement for all subjects. A faint outline of the brain is superimposed. See Methods for details of how the density map was computed.
doi:10.1371/journal.pone.0003892.g001
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addition, for the exemplar electrode, the spectrograms for fearful

and happy faces showed stronger evoked responses around

100 Hz just after the onset of the morph period (t = 1–2 sec),

which was absent for checkerboards. T-scores from two-tailed t-

tests revealed significantly larger responses to dynamic faces than

moving checkerboards (uncorrected for multiple comparisons; 50–

200 Hz, t = 1–2.5 sec, Figure S1F and S2F), and in particular, to

fear morphs than to happy morphs (50–150 Hz, t = 1.2–2, Figure

S1G). By limiting our frequency of interest to 50–150 Hz (high-

gamma band) we found that the high-gamma response was

enhanced by the appearance of static faces, but not by static full-

contrast checkerboard patterns (t = 0.1–1 sec), and that it was

disproportionately enhanced by fearful (Figure S1H, blue) rather

than happy morphs (Figure S1H, red; recorded in channel 75

during the window 1.2,t,2 sec).

While the above analysis approach is commonly used in many

EEG studies, it posed problems for our data. By applying t-tests at

each time-frequency point, we faced massive multiple comparison

problems. Even worse, we analyzed ,100 electrodes and picked

one of the best electrodes for Figures S1 and S2, further raising a

concern for multiple comparisons. Strict correction, such as

Bonferroni correction that assumes independent multiple hypoth-

esis testing, would be unnecessarily strict because we often see

strong correlation in signals across time, frequencies and

neighboring electrodes. In the above approach, we defined the

frequency of interest post-hoc; strictly speaking, our choice of

frequency bands cannot be justified without prior independent

studies. In practice, the best frequency bands were different from

electrode to electrode, and from subject to subject. The best

frequency bands also often depended on the testing condition.

Thus, prior specification of a frequency band of interest could lead

to poor statistical power for detecting any real positive effects. Or,

if it is specified to maximize the effect in a particular study, it may

over-fit the data and generalize poorly.

In order to address these problems, we applied multi-variate

decoding analyses, which optimally linearly combined signals. Our

decoding approaches objectively reduced the dimensionality of the

signal, alleviating multiple comparison problems. A trained linear

classifier learned correlations across time, frequency and electrodes

in an appropriate way to optimize the decoding performance. By

training the classifier with regularization [7] and validating the

classifier against an untrained data set, we were able to retain high

sensitivity with much less over-fitting. In the following, we describe

our decoding approaches and the results obtained from the

decoding analyses.

Decoding analyses
As inputs to the linear classifier, we used the logarithm of the

power estimated via the multi-taper method from each trial. We

trained a regularized least-square classifier [7,8] on randomly

chosen 70% of the trials and tested its decoding performance on

the remaining 30% of the trials for each session in each subject.

We evaluated the decoding accuracy by submitting the classifier

outputs into the receiver operating characteristic (ROC) analysis

[9], rather than assigning a binary correct or incorrect label for

each trial and computing % of correct classification. ROC analysis

allowed us to utilize the information present in the magnitude of

output from the classifier (i.e., an output close to 0 when inputs

cannot be confidently classified as X or Y and an output far from 0

when inputs for a test trial is easily classified as X or Y). We

submitted the graded classifier outputs for all test trials into the

ROC analysis and computed the area under the ROC curve

(Throughout the paper, we call the area under ROC curve A’ for

short).

Here we introduce three novel decoding approaches: 1) time-

frequency decoding map, 2) time course of decoding, and 3)

searchlight decoding. The time-frequency decoding map was

obtained for each session in each subject by combining

information across electrodes within a certain anatomical region

at each time step at each frequency band with linear weights,

taking into account the spatial correlation across electrodes. This

map emphasizes the most informative time-frequency points,

reducing the space dimension in an optimally linear manner. The

time course of decoding for each session was obtained by

combining information across electrodes (space) and frequencies,

reducing the space and frequency dimensions in an optimally

linear manner (Figure 2). The time course analysis provides the

latency for decoding, an earliest estimate of the time when the

information becomes available in a circumscribed anatomical

region. Searchlight decoding combines the signals from a small

cluster of contiguous electrodes, and scans throughout the cortical

surface covered by all electrodes. Thus, the resulting searchlight

decoding map retains spatial information. This allowed us to map

electrode locations on the brain surface according to the maximal

amount of information that they might carry, comparable to

similar approaches used in functional neuroimaging (Kriegeskorte

and Bandettini, 2007).

Based on their location, we grouped electrodes as belonging to

either the ventral or the lateral temporal cortex (Figure 1B and C).

As is typical in field potential recordings during epilepsy

monitoring, precise electrode locations varied across subjects,

making comparisons across subjects difficult with a conventional

analysis. Our decoding analyses are powerful alternative ways to

solve this problem, since they optimally blur the precise

anatomical location of electrodes, which is variable from subject

to subject.

Temporal characteristics of face processing
First, we combined the logarithm of the event-related power

from all electrodes, separately for the ventral and the lateral

temporal cortex, and computed the time-frequency decoding map

to characterize the critical time-frequency points for face

processing. For face vs. checkerboard discrimination, decoding

performance in the ventral temporal cortex was very high, with

most information contained in a frequency band of 50–150 Hz

(Figure 3A) shortly after the stimulus onset (0.1–0.5 sec had

A’ = 0.84–0.86) as well as after the onset of morphing epoch (1–

2 sec had A’ = 0.75–0.80). Decoding performance in the lateral

temporal cortex was lower, and while most information was

similarly contained in a band of 50–150 Hz after the onset of the

static stimulus (A’ = 0.65), it was represented more broadband (0–

150 Hz) after the onset of the morphing epoch (A’ = 0.63–0.67;

Figure 3B).

By combining all frequencies across electrodes, we further

characterized the decoding time course to obtain decoding latency

and maximum decoding accuracy (Figure 3C and D, Table 1).

The ventral temporal cortex showed higher decoding accuracy

than the lateral temporal cortex throughout the stimulus

presentation, including the morphing epoch. The emotional facial

movement evoked activity related to discrimination of faces from

checkerboard in both the ventral and the lateral temporal cortices,

with the former carrying more information than the latter.

How much of this discriminatory information was coming from

the response to faces, rather than to checkerboards? Assuming that

high-gamma power was correlated with local multi-unit activity

[10–12], we examined whether the average high-gamma power

(50–150 Hz, from t = 1.1–1.9 sec, during the morph period) was

higher for faces than for checkerboards. For the ventral temporal
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cortex, compared to checkerboards, the high-gamma responses to

faces were higher (t-score.3 from paired t-test, uncorrected for

multiple comparisons) in 10.4% of electrodes ( = 33/316) and

lower (t-score,23) in 3.5% of electrodes ( = 11/316). For the

lateral temporal cortex, the pattern was opposite; the high-gamma

responses for faces were higher in 3.3% and lower in 6.7% of

electrodes. The entire distribution of t-scores was significantly

more positive (i.e, more electrodes showed higher responses to

faces than to checkerboards) in the ventral than the lateral

temporal cortex (p,1e-8, Kolmogorov-Smirnov test). While we do

not claim that decoding accuracy was solely dependent on the

specific high-gamma increase to faces, we conclude that decoding

accuracy in the ventral temporal cortex was heavily dependent on

the increased power evoked by faces.

Figure 2. Decoding procedure. The different parts of the figure provide a schematic, using real data as an example, of how power spectrograms
estimated in each electrode (the colored spectrograms in the middle) can be pooled to decode stimulus category (fear vs. happy in this example).
(Middle) The average event-related spectrogram (colored graphs) was obtained for each electrode (‘‘Chan1’’…‘‘ChanN’’) under two different
conditions (in this example, happy and fearful trials). Note that neighboring electrodes can show highly variable and complex responses at different
frequencies (color-coded from 22 to +2 dB in channel 1, from 22 to +5 dB in channel 2, and from 23.5 to 1.5 dB in channel N). In the example
depicted in the figure we show only 3 channels out of a typically much larger number, but the problem of visualization and statistical analysis is
already apparent. (Top) Time-frequency decoding map for the ventral temporal cortex of one subject. Color code represents area under the ROC
curve (A’). For example, the red pixel at 1.7 sec and 70 Hz (black arrow) means that when we combine the power at that time-frequency point from
all the electrodes in the ventral temporal cortex with a linear weight (estimated from 70% of the training trials), the classifier can discriminate happy
from fear with A’ = .60 (or 60% correct classification with an arbitrary criterion) for the test trials. (Bottom) In order to characterize the latency of
decoding, we combined the power across frequencies and electrodes. The peak decoding accuracy is A’ = .64 for the bottom panel while it is A’ = .60
in the top panel, showing an advantage in combining information across frequencies in addition to across electrodes. Decoding across frequencies
also facilitates comparison across subjects because the peak of the sensitive frequency bands can vary across subjects but remain relatively constant
in time across subjects.
doi:10.1371/journal.pone.0003892.g002
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Ventral temporal cortex discriminates emotion more
rapidly and accurately than lateral temporal cortex

A dominant view of face perception proposes that regions in

dorsal and lateral temporal cortex, notably the area around the

STS, are specialized for processing changeable facial features that

are important for social communication, including facial expres-

sions [13,14]. Contrary to this view, we found that emotion

decoding performance was better and faster in the ventral than in

the lateral temporal cortex (Figure 4).

Using a time window of 100 msec, the time-frequency decoding

map for emotion discrimination reached above chance only for the

ventral temporal cortex. The decoding accuracy for the ventral

temporal cortex showed two peaks: one in the high gamma range

and the other at lower frequencies (.3 sec to .9 sec after morph

onset; FDR q,0.1, p,0.0091; Figure 4D). To resolve the two peaks

in lower frequencies, we used a longer time window of 500 msec

and an effective frequency resolution of 4 Hz. For this analysis, we

used a step size of 100 msec and analyzed the data up to 100 Hz.

With this resolution, we found one peak at the frequency below

30 Hz and the other peak above 60 Hz (q,0.1, p,0.016)

(Figure 4E). The lateral temporal cortex did not show a consistent

time-frequency decoding map across subjects and none of the time-

frequency pixels survived the statistical threshold (FDR q.0.1).

We analyzed the time course of decoding using a short

(100 msec) and a long (500 msec) time window. With the shorter

time window and smaller time steps, emotion decoding perfor-

mance reached above chance only in the ventral temporal cortex

(peak A’ = 0.57, 0.34 sec after morph onset, q,0.05, p,0.0093).

With the longer window and better frequency resolution, emotion

decoding accuracy reached above chance in both regions,

however, it was better and faster in the ventral (peak A’ = 0.61,

0.34 sec after the morph onset, q,0.05, p,0.012) than in the

Figure 3. Decoding performance for face vs. checkerboard discrimination in the ventral (A and C) and the lateral (B and D) temporal
cortex. A and B Time-frequency decoding map. The onset of static (t = 0) and morph (t = 1) and the offset of morph (t = 1.5) and static (t = 2.5)
stimuli are indicated by vertical lines. Two peaks of decoding performance are found centered around 100 Hz. Only significant pixels are color-coded
(FDR q,0.1; p,0.063 for A and p,0.054 for B). C and D Time course of decoding, combining the power across electrodes and frequencies. We
marked with circles the time points where the decoding performance is significantly above chance (FDR q,0.05; p,0.035 for C and p,0.011 for D).
One standard error of the mean is shown by blue shading. For this analysis we used a 100-msec window with a step size of 50 msec, with an effective
frequency resolution of 20 Hz. For the ventral temporal cortex (A and C), we obtained the data from 21 sessions in 8 subjects and pooled across 23.8
electrodes (mean across sessions). For the lateral temporal cortex (B and D), we obtained the data from 22 sessions in 9 subjects and pooled across
79.1 electrodes.
doi:10.1371/journal.pone.0003892.g003

Table 1. Summary of decoding performance.

Patients Sessions Electrodes Static Face vs. Checker
Dynamic Face vs.
Checker Dynamic Happy vs Fear

Ventral temporal cortex 8 21 23.8616.4 A’ = 0.86 (87 msec) A’ = 0.80 A’ = 0.61 (344 msec)

Lateral temporal cortex 9 22 79.0615.5 A’ = 0.65 (240 msec) A’ = 0.67 A’ = 0.55 (946 msec)

Peak decoding performance (in A’) and the latency of the decoding, defined as the first time point when the decoding became significantly above chance (FDR q.0.05).
doi:10.1371/journal.pone.0003892.t001
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lateral temporal cortex (peak A’ = 0.55, 0.95 sec after the morph

onset, q,0.05, p,0.0066).

Taken together, our results are consistent with the hypothesis

that the ventral temporal cortex performs an initial analysis of

several aspects of faces, which would include diagnostic informa-

tion about the categorization of the facial expression [15,16],

whereas the lateral temporal cortex appears to be more important

for later stages of processing, possibly related to integration of the

information across different modalities and to motor planning for

social interaction [17] (see Discussion for further considerations).

Task-relevant attention improves decoding performance
across frequencies

Decoding analyses also provide insights into the effects of task-

related attentional modulation. We manipulated subjects’ atten-

tion with the task instruction. In the sessions where subjects

performed the emotion discrimination task, we expected they

would pay more attention to faces at the beginning of the morph

period because emotional expression was first revealed at that

point in time. On the other hand, in the sessions where they

performed the gender discrimination task, we expected they would

pay more attention at the beginning of the static period. In the

ventral temporal cortex, decoding accuracy for discriminating

faces from checkerboard (A’fc) was above chance both in the

emotion- and in the gender- discrimination sessions (Figure 5A)

(The results shown were obtained with a 500 msec time window,

but similar results were also obtained with a 100 msec window,

data not shown). A’fc during the morph period was significantly

better in the emotion- (the peak A’fc = 0.85) than in the gender-

discrimination sessions (the peak A’fc = 0.74); the difference (i.e.,

A’fc [in emotion sessions]2A’fc [in gender sessions]) reached

Figure 4. Ventral temporal cortex discriminates emotional expression more quickly and accurately than lateral temporal cortex. A–
C Time course of decoding. D and E Time-frequency decoding map. A, B, D, E The results for the ventral temporal cortex and C for the lateral
temporal cortex. For A and D, we used a 100-msec time window with a step size of 100 msec, giving an effective frequency resolution of 20 Hz. For
B, C, and E, we used a 500-msec window with a step size of 100 msec, giving an effective frequency resolution of 4 Hz.
doi:10.1371/journal.pone.0003892.g004
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significance right after the start of the morph period (t = 1.15 sec

from the stimulus onset), attained its peak of 0.11 at t = 1.5 sec,

and remained until the subject’s button-push response (t = 2 sec)

(Figure 5B, q,0.05, p,0.02). To examine which frequency bands

are responsible for these attentional effects, we used time-

frequency decoding maps and computed their A’fc difference.

Interestingly, the attentional effects were not localized in particular

frequencies, but distributed across frequencies (Figure 5C, q,0.1,

p,0.0079).

We further hypothesized that the decoding accuracy for

discriminating emotion (A’em) and gender (A’gn) would be

modulated by the task-instruction; A’em should be higher in the

emotion- than that in the gender- discrimination sessions, while

A’gn should be higher in the gender- than that in the emotion-

discrimination sessions. However, we did not observe any such

effects (See Discussion.) For the lateral temporal cortex, we did not

find any significant attentional effects of any kind.

Searchlight decoding for anatomical information
To reveal the anatomical organization of face processing, we

created an electrode-based decoding map. In conventional

analyses, response selectivity of each electrode is mapped by

averaging the power with some cutoff for the frequency band (such

as below or above 50 Hz in Figure 6A and B). In our single

electrode-based decoding analysis, we combined the power in each

electrode optimally linearly across frequency and time (100–

900 msec from the stimulus onset, Figure 6C). Combination of

several neighboring electrodes within a ‘‘searchlight’’ improved

the decoding accuracy (Figure 6D). Here, a ‘‘searchlight’’ is

defined as a narrow circular field of view, which contains on

average four neighboring electrode contacts. To create a

searchlight decoding map, we scanned through the cortex by the

searchlight to cover all the electrodes.

To obtain a single-electrode-based decoding map across

subjects, we smoothed the decoding accuracy and then averaged

across subjects (See Methods). The results for the ventral temporal

cortex are shown in the bottom row of Figure 6E. The relatively

poor decoding performance is expected for several reasons in

addition to the general advantage in the searchlight decoding

(Figure 6E, top row). First, sensitive electrodes with high decoding

accuracy are often abutted by poor neighboring electrodes as can

be seen in Figure 6C. Such a situation often arises when two

electrodes are separated by a sulcus, reflecting an anatomical

discontinuity. In this case, simple spatial smoothing degrades the

performance of the best electrodes. Second, the precise locations of

the best electrodes are not consistent across subjects, resulting in

further deterioration of the apparent single-electrode decoding

accuracy when decoding maps from multiple subjects are

averaged.

Searchlight decoding solves these problems. This approach uses

an optimal weighting among locally adjacent electrodes, so that

the resulting map retains the anatomical information about

electrode location while being more robust with respect to inter-

subject variability; even if exact locations of the most sensitive

electrode vary across subjects, the averaging on the searchlight

decoding map does not destroy such a local peak information as in

the case of the single electrode-based decoding explained above.

Searchlight decoding revealed information-carrying regions that

correspond to the FFA in the ventral cortex (Figure 6E, top row)

and to the STS in the lateral temporal cortex (data not shown).

Discriminating faces from checkerboard pattern (A’fc) in the right

middle fusiform gyri reached almost 100% (Figure 6E, left two

columns in the top row). The apparent discrepancy between this

perfect searchlight decoding and the maximal decoding perfor-

mance in the time course of decoding (A’fc = .85, Figure 2C) is due

to sampling bias of the electrodes and the subjects in the

searchlight decoding. As can be seen in Figure 1B, four subjects

had electrodes roughly around this right middle fusiform region.

To see if this right middle fusiform region always contains the most

sensitive electrode, further studies would be needed. It is

interesting to note that the right FFA-like region seems to carry

information about emotion (Figure 6E, middle) and gender

Figure 5. Task-relevant attention improves decoding. A
Decoding performance for discriminating face vs. checkerboard (A’fc)
when subjects were performing the emotion- (blue) or the gender-
(green) task in the ventral temporal cortex. Circles mark the points
where the decoding performance is significantly above chance (q,0.05,
p,0.029). We combined 24.0 electrodes across all frequency bands. B
The mean difference in decoding accuracy for A’fc in the emotion-task
minus A’fc in the gender-task sessions (thick red line). The positive
difference reached significance, marked by circles around the time
when the stimuli started to morph (t = 1; q,0.05, p,0.012). The peak
difference reached 11% at the maximum. Shading represents one
standard error above and below the mean. C Time-frequency map for
the difference in A’fc. The attentional effects were distributed across the
frequencies. The map is thresholded at FDR q,0.1, p,0.0079. For this
analysis, we used a time window of 500 msec with a step size of
100 msec, the effective frequency resolution was 4 Hz.
doi:10.1371/journal.pone.0003892.g005
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(Figure 6E, right two columns). To perform the appropriate

statistics here, however, we would need a larger sample of subjects.

Though it is difficult to perform statistical analysis on the

searchlight decoding map, we see a hint of hemispheric

specialization in terms of decoding accuracy in Figure 6E. We

followed up these possible laterality effects in a final analysis.

Laterality effects
Using searchlight decoding, we had observed an apparent right

hemisphere dominance for face processing, consistent with prior

studies [18–21]. Here, we grouped electrodes in each hemisphere

into three subregions; the anterior and the posterior lateral

temporal cortices, and the ventral temporal cortex. Decoding was

performed by combining across time and frequency in the same

way as searchlight decoding.

We found evidence for a right hemispheric dominance in the

anterior STS (Figure 7A) and the ventral temporal cortex

(Figure 7B). In the anterior STS, decoding accuracy for

discrimination of face vs checkerboard (A’fc) and emotion (A’em)

was above chance in the right hemisphere (p,0.01 for A’fc, and

p,0.001 for A’em, t-test with a null hypothesis of A’ = 0.5; 11

sessions, 5 subjects, mean number of electrodes = 40.0) but not in

the left hemisphere (p.0.05 for both A’fc and A’em; 11 sessions, 4

subjects, mean number of electrodes = 38.4). The difference was

significant (two-tailed unpaired t-test, p,0.05 and p,0.01 for A’fc
and A’em, respectively). In the ventral temporal cortex, decoding

accuracy for discrimination of gender (A’gn) was above chance in

the right (p,0.01, 17 sessions, 7 subjects, mean number of

electrodes = 18.9) but not in the left hemisphere (p.0.05, 21

sessions, 8 subjects, mean number of electrodes = 11.0) with a

significant difference (two-tailed unpaired t-test, p,0.05). Unex-

pectedly, in the ventral temporal cortex, emotion decoding (A’em)

was above chance in the left (p,0.001) but not in the right

hemisphere (p.0.05), with a significant difference (p,0.01).

Figure 6. Searchlight decoding map in the ventral temporal cortex. A–D Comparison of the classic analysis (A, average power below 50 Hz;
B, above 50 Hz) and decoding analysis (C, single-electrode based decoding; D, searchlight decoding). A and B The mean event-related power from
100–900 msec from the onset of the morph epoch was contrasted between the happy and the fear morphing trials. The difference was evaluated
with a t-test and thresholded at |t|.1. Red color indicates greater response to happy, blue indicates greater response to fear. C Single-electrode
based decoding. D Searchlight decoding for the same subject (subject 153, two sessions). Here, the spectrogram was estimated with a time window
of 500 msec, with a step size of 100 msec as in Figure 5A and B. E The average decoding map across 8 subjects (see Method for how we averaged
decoding maps). Decoding accuracy in the bilateral middle ventral temporal cortex improved substantially by pooling neighboring electrodes (top),
compared to the near-chance decoding obtained with a single-electrode decoding analysis (bottom). For emotion decoding (middle), the pooling
by searchlight improves the decoding performance substantially. For the gender decoding (right two columns), there are discriminating clusters in
the middle fusiform gyri. Note the best decoding accuracy originates roughly from the same locations among five panels in the top row. Each color-
coded pixel shown was covered by electrodes from at least two subjects.
doi:10.1371/journal.pone.0003892.g006

Decoding Faces in ECoG

PLoS ONE | www.plosone.org 9 December 2008 | Volume 3 | Issue 12 | e3892



Though a right hemisphere advantage for face processing has been

reported previously [18–21], the superior emotion processing in

the left ventral temporal cortex has not (although there are reports

of a left amygdala advantage [22]). Decoding analysis, however,

can reveal only the information available in principle, not how and

whether that information is used by the brain to guide behavioral

discrimination. It is possible that diagnostic facial features that are

critical for emotion detection [16] are processed automatically and

represented more accurately in the left hemisphere, but that the

integration of information required for behavioral discrimination

is performed in the right hemisphere.

Discussion

Considerable effort has been devoted to showing that, among

other stimulus categories, faces are processed preferentially by

specific anatomical structures [23–26] and can evoke scalp EEG

and MEG responses at certain latencies [15,27–33]. Yet

anatomical space and detailed processing time have generally

not been mapped jointly, in large part because doing so requires

rarely available methods such as the intracranial recordings we

present here [1–4,28,34,35]. We analyzed the intracranial ECoG

with a decoding technique and found that 1) the best

discrimination of faces from checkerboards arose within a critical

frequency band of 50–150 Hz in the ventral temporal cortex, 2)

this held for both static and dynamic stimuli, 3) the accuracy of

decoding was much better in ventral as compared to lateral

temporal cortex, for faces vs. checkerboards, and also for

happiness vs. fear, 4) in the ventral temporal cortex, task-relevant

attention improved the decoding accuracy for stimulus category

(A’fc) across wide frequencies by as much as 11%, but it did not

improve decoding accuracy for emotion (A’em) and gender (A’gn),

and 5) the anterior STS and the ventral temporal cortex showed

evidence for hemispheric specialization of face processing.

Role of ventral and lateral temporal cortex in face
processing

An influential model of face processing [36] hypothesized that

face identity and emotional expression are processed by function-

ally separate systems. More recently, this idea has been resurrected

on the basis of findings from cognitive neuroscience: invariant

features of faces (i.e., identity) appear to be processed predomi-

nantly in ventral temporal cortex, including the fusiform face area

(FFA) [24,37], while changeable features of faces, such as

emotional expression, appear to be processed in lateral temporal

cortex, including the superior temporal sulcus (STS) [13,14]. This

popular theory of face processing has been supported by

neuropsychological studies of subjects with focal lesions, as well

as by fMRI and single cell physiology (For reviews, see [13,36]).

However, a careful review of the literature casts some doubt on the

extent to which processing of face identity and expression are truly

independent. For instance, while there are prosopagnosic subjects

with severely impaired identity recognition yet spared emotion

recognition, there is no known case of severely impaired general

recognition of emotions with spared recognition identity (although

there are cases with selective impairments in recognizing certain

specific emotions [38,39]). Whether identity and emotion

information are processed by entirely separate neural structures

is still open to debate [17].

We found that decoding performance in the ventral temporal

cortex around the fusiform gyrus was much superior to the lateral

temporal cortex, including the STS. The ventral superiority was

expected during the static period; surprisingly, however, this held

true for discrimination of faces from checkerboards during the

morph period as well (A’fc at t = 1–2 sec). In our paradigm, the

identity of a face is revealed to subjects at the onset of a trial and

remains constant throughout the trial, in particular, it is constant

during the morph period. Thus, no additional information

relevant to face vs. checkerboard discrimination is revealed during

the morph period. Decoding performance A’fc in the ventral

temporal cortex peaked immediately after the stimulus onset

(A’fc = 0.85), and after it fell below A’fc,0.6, it quickly improved at

the onset of morphing (A’fc = 0.77, Figure 3). Our analysis based

on the average high-gamma activity during the morph period

showed that many electrodes in the ventral temporal cortex

increased activity to faces, while those in the lateral temporal

cortex increased activity to checkerboard patterns. This pattern of

results strengthens the idea that the ventral temporal cortex serves

as a general ‘face processor’, which responds to facial movements,

even without any change in identity. While we cannot rule out the

possibility that motion of the stimulus strongly attracted attention

and therefore activated the ventral temporal cortex, we note that

such facial motion would be expected to attract more attention in

the lateral than the ventral temporal cortex according to the

standard view. Our results were not consistent with what that

theory would predict. Further studies will be needed to investigate

Figure 7. Laterality effects. A In the anterior STS region, the decoding accuracy for discrimination of face from checkerboard (A’fc, left) and for
discriminating emotion (A’em, right) was better in the right than that in the left hemisphere. B In the ventral temporal cortex, a right hemisphere
dominance was also found for gender decoding (A’gn, right). However, the left hemisphere was superior to the right hemisphere when decoding
emotion (A’em, left). *, **, and *** indicates the significance level of p,0.05, p,0.01, and p,0.001, respectively.
doi:10.1371/journal.pone.0003892.g007
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whether the same ventral temporal region also responds to other

types of biological motion, such as gaze shifts or movements of the

mouth during speech.

Better and faster emotion decoding accuracy (A’em) in the

ventral than the lateral temporal cortex indicates that information

processed within the ventral cortex at early latencies might contain

critical and sufficient information to discriminate emotional

expressions. It is plausible that the activation in the ventral

temporal cortex reflects automatic processing of some facial

features such as eyes [15], diagnostic for certain emotion

categorizations [16], but may not be causally related to the

recognition of emotional expression, which can be supported by

regions other than the ventral temporal cortex (Adolphs, 2002).

The worse decoding accuracy for emotion (A’em) in the lateral

than the ventral temporal cortex might be due to other reasons. It

is possible that the collective neuronal activity measured by our

field potential recordings may have smeared out more fine-grained

encoding of emotional expression information at the level of single

neurons [40,41], and that this effect may have differentially

affected the regions around the putative FFA and STS. Such

spatiotemporally fine-grained information would not have been

detected by individual surface electrodes because the detectable

information reflects the integrated activity at the level of a

neuronal population. Another potential reason may be that our

surface electrodes were less sensitive to information from cortex

buried within sulcal folds, as they are for information from

subcortical structures with non-uniform dendritic arborization

[42]. If an electrode were buried in the sulcus of the lateral

temporal cortex, emotion decoding performance might improve

substantially, and possibly better than for the ventral temporal

cortex.

Rapid categorization in ventral temporal cortex?
We found that field potentials recorded from the ventral

temporal cortex discriminate faces from checkerboards rapidly.

Previous EEG [28–31,43,44] and MEG studies [32] found an

early evoked potential before or around 100 msec that is

correlated with stimulus categorization. This rapid categorization

may not reflect subjects’ decisions to categorize the stimulus, but

rather statistical image properties of the different categories of the

stimuli [43]. Alternatively, this rapid response may be correlated

with behavioral categorization, especially for categorization of

stimuli as face vs. non-face objects [32]. Because we were

originally motivated to study the neuronal response during

dynamically morphing facial expressions, our choice of control

stimuli (high-contrast checkerboards) was not optimal to study

rapid categorization of objects at such a short latency. We are now

addressing these questions and extending our current findings by

using other classes of stimuli. Can rapid response in the ventral

cortex categorize several classes of objects?

We note that the exact relationship between the rapid power

modulation in high-frequency bands that we observed and the

early component reported in EEG and MEG previously is unclear.

The early EEG/MEG component is dominated by the stimulus-

locked (i.e., response phase is constant across trials) power

modulation in low frequency bands with minimal contribution

from high frequency bands because the power spectrum of the

electroencephalogram has a 1/f distribution (Figures S1 and S2

C–E). Our decoding was mainly based on power modulation in

high-frequency bands (e.g., Figure 3). An interaction between low

and high frequency responses was demonstrated in a recent study

[45] that found robust coupling between the phase of the theta

rhythm (4–8 Hz) and the power of high gamma responses. Further

studies using a stimulus-evoked response paradigm will be required

to reveal the relationship between the transient power increase we

found in high-frequency bands and its power modulation by the

phase of lower frequency oscillations.

Attentional improvement of decoding performance
Depending on the task instruction, the decoding accuracy for

discriminating faces from checkerboards (A’fc) improved by 11%

in the ventral temporal cortex. During the morph period, attention

to facial emotion improved A’fc across wide frequencies compared

to attention to facial gender (Figure 6C).

Task-relevant top-down attention is known to modulate

neuronal firing rate [46,47], event-related power in the high

gamma range [48] and BOLD fMRI signals [49]. Recently,

attention has been shown to improve decoding performance in

fMRI [50]. Another potential effect of attention is the modulation

of communication between separate cortical regions. Recent

neurophysiological studies [51,52] examined the role of coherence

between spikes and local field potentials and showed specific

increases in spike-field coherence in the gamma range (,40 Hz),

together with decreases in the beta range (,20 Hz). Our

differential time-frequency decoding map (Figure 7C), however,

revealed rather distributed effects of attention across frequencies.

It is worth noting that the peak decoding difference in the time-

frequency map (Figure 5C) was comparable to the peak decoding

time course (Figure 5B), implying no advantage in combining the

attentional effects across frequencies. In other words, the

attentional effects may be present in broadband, but highly

correlated across frequencies. We also note that if attention were

to change cross-frequency coherence to improve inter-areal

communication (e.g., via modulating signal/noise correlation

[53]), the attentional effects for decoding across frequencies and

channels (Figure 5B) would be higher than the attentional effects

for decoding across channels at each time-frequency (Figure 5C),

which was not the case. This type of effect is expected if the power

of the field potential is modulated uniformly across frequencies. It

is tempting to suggest that our observed effects may reflect an

increase in firing rate without specific oscillatory components.

Lack of attentional effects on emotion & gender
discrimination

Though attention improved the decoding accuracy for faces vs.

checkerboards (A’fc), it did not modulate the decoding accuracy for

emotion (A’em) or gender (A’gn) during either the static or morph

periods. The lack of attentional modulation for gender decoding

(A’gn) may be due to floor effects; we did not find good decoding

accuracy for gender discrimination in any recording location

(Figure 6), time window, or frequency band. Another possible

reason is that our gender task was too easy to engage any

attentional effects (behavioral accuracy was 95% correct). In fact,

the task can be performed by seeing the stimulus only briefly at

any time point during the 2.5 seconds of stimulus presentation,

possibly resulting in a temporal spread of attentional effects that

are inconsistent across trials and subjects.

By contrast to gender discrimination, emotion discrimination

required more temporally focal attention, especially around the

onset of the morph epoch, improving the decoding of faces vs.

checkerboards (A’fc) (Figure 5). As the emotion decoding (A’em)

was above chance in both the ventral and the lateral temporal

cortex (Figure 4), the lack of attentional effects are unlikely to be

due to floor effects. Again, the task might have been too easy to

observe any attentional effects (behavioral A’ was 0.90 for emotion

discrimination). Using five different categories of emotional faces

(which is presumably more attentionally demanding than our

stimulus set), Krolak-Salmon et al (2002) reported strong
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attentional effects of emotion processing in event-related potentials

recorded intracranially from the amygdala. Future studies utilizing

more demanding tasks or more emotion categories would be

necessary to reveal the nature of attentional modulation in the

ventral temporal cortex.

Value of the decoding approach for intracranial EEG
The direct advantages of decoding for intracranial EEG are

three-fold: 1) It allows visualization and provides a concise

summary of high dimensional data, and is thus especially well-

suited for time-frequency analyses of multi-channel recordings; 2)

It avoids severe multiple comparison problems inherent to multi-

channel time-frequency analyses, which often lead to a rather

arbitrary selection of a set of particular electrodes, particular

frequency bands, and particular time ranges to be statistically

evaluated; 3) It facilitates averaging of data from multiple subjects.

In intracranial recordings, electrode distributions as well as the

exact locations of sensitive electrodes vary across subjects. With

searchlight decoding we combined neighboring electrodes, and

with the time-frequency decoding map and time course of

decoding we combined all the electrodes within a larger

anatomical unit. These operations optimally and linearly blurred

fine anatomical structures, making the decoding performance

comparable across subjects despite their inhomogeneity. We

believe this is an alternative powerful analysis method, useful for

future studies, when one is interested in questions at the system

level with precise time-frequency resolution.

Those three benefits of the decoding approach are interrelated.

We provided an example of the classical analysis in Figure 6A and

B, where these problems can be easily appreciated. To present a

spatial map of the time-frequency response, a considerable amount

of information gained from the time-frequency analysis is simply

wasted due to averaging across time and frequency. In Figure 6A

and B, we summed the evoked power above or below an arbitrary

frequency (i.e., 50 Hz), but this is clearly not the optimal strategy.

Even if one finds an optimal selection of frequency bands, time

points, and spatial locations for averaging, this selection tends to

‘over-fit’ to a particular data set, which generalizes poorly to

different subjects. We overcame this problem by optimally linearly

combining the response along frequency and time for each subject

with an objective and automatic decoding procedure and

evaluating the decoder’s performance on the test trials, which

the decoder did not see during training. Although we lost some

spatial specificity (including the polarity of the response only visible

in Figure 6A and B), combining electrodes ‘blurred’ fine spatial

structure optimally and linearly and permitted pooling across

subjects. A similar problem arises in high-resolution fMRI, where

fine spatial patterns of the response make it difficult to average

across subjects [54,55]. In other words, in both intracranial ECoG

and high-resolution fMRI, the spatial resolution is much finer than

the spatial jitter inherent to individual anatomical differences. If

simple smoothing were used, the very advantage conferred by high

spatial resolution is totally discarded. Even though spatial

specificity of the response is best preserved in the raw data for

each individual subject, we cannot generalize and replicate such a

finding to other individuals; we therefore opted for better

averaging across subjects at the expense of too fine spatial

resolution. The same problems arise for the high temporal

resolution of the ECoG. The very advantage of high time-

frequency resolution is wasted if one simply averages across time

and frequency. The decoding technique on which we capitalized

in our study is a powerful alternative for analyzing multi-channel

field potentials across individuals by preserving high spatio-

temporal resolution with minimal assumptions about timing,

frequency and spatial locations of interest.

Finally, we point out the general advantage of decoding

analyses: decoding performance (such as A’ = 0.8 or 80% correct

classification) is intuitive and objective. Compared to decoding

analyses, conventional statistical analyses can be difficult to

interpret because many factors affect the resulting estimates of

significance (e.g., whether or not the assumptions of the response

distribution are met, how many subjects and trials are tested,

whether there were correlations among the data, etc). This is

especially true when multiple factors are considered in a

multivariate analysis, where one can easily over-fit the data.

Decoding analyses prevent over-fitting with a cross validation

procedure (i.e., separate training and test trials) and offers a very

intuitive ‘accuracy’ measure, such as % correct or A’. Modern

sensory neurophysiology, for example, compares different models

of neuronal response within a decoding framework [56]. As the

analysis of electrophysiological data becomes more sophisticated,

the intuitive and objective nature of a decoding approach becomes

increasingly important. For example, we might be able to improve

decoding performance by devising an optimal exclusion criterion

for trials and/or electrodes. Similarly, we could objectively

compare different kinds of preprocessing techniques, such as

source modeling and independent component analysis, and

quantify the degree of improvement afforded by each of these.

Decoding analyses not only facilitate comparisons across different

neuronal measures (such as EEG, MEG, fMRI), physiological

measures (such as eye movements, skin conductance), and different

aspects of a particular measure (such as the event-related power,

the phase, and the degree of synchrony of multiple ECoG) but

they ultimately allow us to combine these measures to provide the

best inference of our mental life from a third-person perspective.

Materials and Methods

Subjects
We obtained written informed consent from nine patients with

medically intractable epilepsy (see Table 2 for detailed demo-

graphic information) who were undergoing epilepsy monitoring to

guide neurosurgical treatment. The study was approved by the

Internal Review Board at the University of Iowa. The patients

underwent electrode implantation under a purely clinical protocol

and the location of electrodes was determined solely by medical

considerations. All patients were on anticonvulsant medications in

reduced or absent dosage to facilitate the occurrence of seizures to

aid in the clinical detection of the seizure foci. The experiments

reported here were conducted typically 6–10 days after the

implantation of the electrodes. Recording sessions were kept as

brief as possible and were dependent on the patient’s willingness

for research participation at a given moment as well as on clinical

constraints. We did not record when our experiments introduced

any clinical inconvenience, and we did not record for 24 hours

after any major seizure.

Anatomical location of the electrodes
On the lateral temporal cortex, all nine subjects had grid

electrodes with 64–96 contacts (mean across subjects = 77.6, std

16.3); five had them on the right hemisphere, and four on the left.

Inter-electrode distance of the lateral temporal grid was 5 mm.

The grids were configured in a rectangular matrix of 468, 868, or

1268. The location of the grid was roughly similar across subjects

(Figure 1C). On the ventral temporal cortex, eight subjects had

several strip electrodes in each hemisphere: seven subjects had 4–

40 contacts (mean 16.5, std 17.5) in the right hemisphere and eight
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subjects had 4–16 contacts (mean 11.0, std 4.7) in the left

hemisphere. The location and number of the strip electrodes

varied (Figure 1B). Ventral electrodes were either 4-contact strip

electrodes or 268-contact strip-grid electrodes. Inter-electrode

distance of the 4 contact strip electrode was 1 cm and that of 268

strip electrode was 5 mm.

For each subject, we obtained structural T1-weighted MRI

volumes (pre- and post- electrode implantation), CT scans (post-

implantation) and digital photos of the electrodes (during surgery,

only for the lateral temporal grid electrodes). Coronal slices of the

MRI were obtained with 1 mm slice thickness, 0.7860.78 mm in-

plane resolution. Axial slices of the CT scans were obtained with

1 mm slice thickness, 0.4560.45 mm in-plane resolution. Post-

implantation CT scans and pre-implantation MRI were rendered

into 3D volumes and co-registered using AFNI (NIMH, Bethesda,

MD, USA) and ANALYZE software (version 7.0, AnalyzeDirect,

KS, USA) with mutual information maximization.

Because the ventral temporal strip electrodes were not directly

visible during surgery, we did not take any digital photographs of

them. However, as the contacts on the strip electrodes were not as

dense as in the lateral temporal grids, post-implantation CT scans

were sufficient to identify the coordinates of the contacts. We

transferred these coordinates onto the higher resolution pre-

operative MRI for visualization purposes.

For the lateral temporal grid electrodes, the electrodes were

denser than those on the strip electrodes. Therefore, after CT-

MRI coregistration, we further refined the estimated coordinates

of each contact by visually matching the gyral-sulcal pattern of the

MRI-based surface rendering with that of digital photographs

taken during electrode placement and removal surgeries.

After the locations of electrode contacts were visualized on the

3D anatomical MRI rendering, we obtained 2D projections of the

MRI from ventral (Figure 1B) and lateral (Figure 1C) views, using

in-house programs in MATLAB 7 (Mathworks, MA, USA). Next,

we aligned the 2D projection across subjects by translation,

rotation and scaling, using the transparent layers in Adobe

Photoshop. For the ventral view, we aligned the outlines of the

brains for each subject into that of a reference subject whose brain

outline is shown in Figure 1B. For the lateral view, we first flipped

the side for the right hemisphere. Then we aligned each brain into

the target brain shown in Figure 1C. With translation, rotation,

and scaling, we aligned the conspicuous anatomical landmarks

around the temporal surface, including the lateral sulcus, the

superior temporal sulcus, and the outline of the inferior frontal

lobe and the anterior temporal lobe.

Electrode density map and searchlight decoding map
We obtained an electrode density (ED) map for each subject by

the following equation;

ED jð Þ~
X

i

pos ið Þ.K

where ED(j) refers to an electrode density map for j-th subject,

pos(i) is a 2D delta function that is zero except at the coordinate

[x,y] for an electrode i, i spans across all the electrodes for j-th

subject, NN denotes convolution, and K is a 2D Gaussian kernel

whose full-width-at-half-maximum was the average inter-electrode

distance on the 2D projection and whose extent was circular with

an radius being the inter-electrode distance.

When averaging the ED maps across subjects (Figure 1D and

E), we used the following equation;

ED~
1

n

Xn

j~1

ED jð Þ:

Thus, the summed pixel values in the average density map for all

subjects equal the average number of electrodes across subjects.

We obtained a searchlight decoding map for one subject by the

following equation;

SD jð Þ~

P
i

d ið Þ � pos ið Þ.Kð Þ

ED jð Þ ~

P
i

d ið Þ � pos ið Þ.Kð Þ
P

i

pos ið Þ.Kð Þ

where SD(j) refers to a searchlight decoding map for j-th subject,

d(i) is a scalar constant representing the decoding accuracy at the i-

th electrode (or i-th search light) and pos(i) is a 2D delta function

that is zero except at the center position of the i-th electrode (or i-

th searchlight). We normalized the summed decoding accuracy by

ED(j) at each pixel. If there is only one electrode (i = 1), SD(j) is d(1)

for the extent of K and not defined elsewhere. When there is an

overlap between more than two electrodes, SD(j) linearly

interpolates the decoding accuracy.

Table 2. Patients’ demographic information.

ID Age Sex Education Handedness Language
Side of
Grid Seizure focus

138 20 M 14 R L L Left anterior lateral temporal, independent right mesial temporal interictal
discharge

139 53 F 12 L R R Right mesial temporal

140 26 M 10 R L L Left anterior lower parietal

142 33 F 12 R L R Right mesial temporal

146 29 F 16 R L L Left mesial temporal

147 29 M 14 L L L Left posterior ventral temporal cortex

149 22 M 11 L Bilateral R Bilateral mesial temporal

153 31 F 15 R L R Right mesial temporal

154 40 M 13 R L R Right mesial temporal

Education is indicated in years.
doi:10.1371/journal.pone.0003892.t002
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We obtained a searchlight decoding map across subjects

(Figure 6E, top row), by the following equation;

SD~

P
j

SD jð Þ
P

j

ED jð Þ~

P
j

P
i

d i,jð Þ � pos i,jð Þ.Kð Þ
P

j

P
i

pos i,jð Þ.K

Electrophysiological recording and stimulus display
ECoG was recorded with intracranially implanted electrodes

(Ad-Tech Medical Instrument Corp., WI, USA). Electrical

potential at each electrode was referenced to the electrode placed

under the scalp near the vertex of the skull. The impedances of the

electrodes were 5 k–20 k Ohm. Signals from the brain were

digitized and recorded using the Multi-Channel Neurophysiology

Workstation (Tucker-Davis Technologies, FL, USA) and analyzed

offline using custom programs in MATLAB. For an initial six

subjects, we used an LCD display (Multisync LCD 1760V, NEC,

Tokyo, Japan) for stimulus presentation and recorded the

electrophysiological signal at a sampling rate of 1 kHz. For the

three latest subjects, we used another LCD display (VX922,

ViewSonic, CA, USA) and recorded the signal at 2 kHz. In both

cases, the display refresh rate was 60 Hz. We measured the precise

timing of the stimulus onsets by presenting a small white rectangle

on the top-left corner of the display and recorded the response of a

photodiode directly attached at that corner. The output from the

photodiode was recorded along with the electrophysiological

responses in the same recording system.

Stimuli and Task
We used gray scale pictures of neutral, happy and fearful

expressions of 4 individuals (2 female) from the Ekman and Friesen

set [57]. Each face was equated for size, brightness, contrast, and

position and framed in an elliptical window using MATLAB. The

faces subtended about 7.5610 deg in visual angle. For the morph

movie period of our stimuli, we created 28 images by linear

interpolation between neutral and emotional faces (Morph 2.5,

Gryphon Software, CA, USA). We presented the stimuli using

Psychtoolbox [58] and MATLAB 5.2 on a Power Mac G4 running

OS 9.

A trial began with a baseline static plaid pattern for 1 second,

followed either by a static neutral face or by a radial checkerboard

pattern (with black/white square wave modulation at around 12

cycles per face, Figure 1A). After a further 1 sec (2 seconds total

from the trial onset), the static neutral face started to morph into

either a fearful or a happy expression, or the radial checkerboard

pattern started to expand or contract. The morph period lasted

500 msec. The last frame in the morph movie stayed on for

another 1 second. After the stimulus was extinguished, subjects

were prompted to make a response to discriminate the stimulus. In

a given session, subjects were instructed to discriminate either the

emotion or the gender of the face if they saw a face. They were

asked to answer ‘other’ if they saw a checkerboard in all sessions.

The prompt reminded subjects of the three alternatives as [1,

happy; 2, other; 3 fear] in the emotion discrimination sessions and

[1, woman; 2, other; 3, man] in the gender discrimination sessions.

After the response, the next trial started. We did not put any time

constraint on the response time and did not instruct subjects to put

any priority over the speed or accuracy.

One session consisted of 200 trials; 80 trials of neutral-to-fearful

face morphs (20 for each identity), 80 trials of neutral-to-happy

morphs, 40 trials of checkerboard (20 expanding, 20 contracting).

Subject 139 and 146 performed only one session of the emotion

discrimination task (subject 146 completed only 55 trials due to a

technical problem). We collected electrophysiological data from a

total of 22 sessions across subjects, and behavioral responses from

a total of 19 sessions (3800 trials).

Spectrogram analysis
The spectrogram (time resolved Fourier Transform) of the raw

EEG signal was estimated using a multi-taper method (Figure S1

and S2, C–E) with a sliding short time window. We used three

Slepian data tapers. For decoding analysis, the logarithm of the

power spectrum during the baseline period (21 to 20.5 sec from

the onset of the static baseline stimulus) was subtracted to obtain

the event-related power at each frequency in each trial. Input to

the decoder was, therefore, the log-transformed event-related

power. For the analysis of the high-gamma frequency range (up to

300 Hz), we used a time window of 100 msec with a step size of

50 msec. This gave us a half bandwidth (W) of 20 Hz: W = (K+1)/

2T, with K being the number of data tapers, K = 3, and T being the

length of the time window, T = 100 msec. For a time window of

500 msec with a step size of 100 msec, a half bandwidth was 4 Hz.

Decoding procedure (General)
Using a decoding technique, we discriminated face vs.

checkerboard, happy vs. fear and male vs. female by combining

the event-related power in different ways; the power at each time-

frequency point was combined across electrodes in the ventral or

lateral temporal cortex for time-frequency decoding, (Figure 2 top,

Figure 3A and B), across frequencies and electrodes in a given

region (e.g., the lateral temporal cortex) for decoding time course

(Figure 2 bottom, Figure 3C and D), and across times and

frequencies of a few adjacent electrodes for searchlight decoding

(Figure 6). Optimal weights (w) were estimated by a regularized

least square classifier [7,8]. Decoding analysis was separately

performed for each session in each subject. 70% of trials were

randomly selected to train the classifier, and the remaining 30% of

trials were used as test trials to evaluate classification performance.

In order to minimize the bias of the classifier, we sampled the same

number of trials for either class (e.g., face vs. checkerboard); if the

numbers of trials differed between the classes (for example, n1 trials

for class 1 and n2 trials for class 2, where n1.n2), we first randomly

sampled a subset of trials from the class with more trials (i.e., we

randomly sampled n2 trials from class 1) so that the two classes had

the same number of trials. This procedure resulted in n1 = n2 = 40

for face vs. checker classifier and n1 = n2 = 80 for emotion or

gender classifier. We applied this general rule to one exceptional

session where we had only 55 trials in total. Because we balanced

the number of trials for each classes, we did not observe any

decoding bias, as is seen for decoding time course in Figure 3–5; A’

was at the chance level ( = 0.5) during the baseline period (t,0) in

face vs. checkerboard discrimination (Figure 3C and D and

Figure 5A) and before the morph period (t,1) in emotion

discrimination (Figure 4A, B, and E). When discriminating face vs.

checkerboard, we pooled all face trials across different emotions,

genders and identity and discriminated those trials from

checkerboard trials (collapsing across contraction and expansion

epochs). As a result, in an extreme case, a face vs. checkerboard

classifier might have been trained on 28 female happy faces and 20

contracting and 8 expanding motion trials (i.e., 70% of

n1 = n2 = 40 trials is 28 trials) and then tested on 12 male fear

faces and 12 expanding motion trials, a more strict test for

generalization.

We assessed decoding performance using signal detection theory

[9]; we sorted the output from the classifier on the test trials and
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subjected it to an ROC analysis. We report the non-parametric

estimates of sensitivity, area under the ROC curve (A’) as an index

of decoding performance rather than % correct classification,

because A’ incorporates information in the magnitude of classifier

outputs, which is totally discarded in % correct classification. We

repeated the above procedure 10 times to obtain an estimate of A’.

A separate classifier was trained and A’ was estimated for each

classifier at each data point. For example, the time-frequency

decoding of emotion shown in Figure 2 (top panel), used 36360

independent classifiers (36 time points6101 frequencies; at each

time-frequency point, 10 classifiers were trained with a different set

of 70% of trials for training). This was repeated for each of 22

sessions.

Any abnormal trials (i.e., due to apparent epileptic spikes) did

not significantly affect our decoding analysis. The aberrant trials in

the training set would contribute minimally to the learning of

optimal weights because we used a regularized classifier to reduce

the effects of outliers [7]. Those in the test set could only reduce,

not improve, the decoding accuracy. Similarly, bad electrodes or

electrodes close to epileptic foci would be expected to affect our

analysis only minimally because, during training, those electrodes

would automatically be assigned lower weights to improve the

decoding accuracy. In other words, our decoding approach

automatically and objectively pruned the influence of abnormal

trials and electrodes, without relying on any subjective criterion for

removal of a subset of trials and electrodes (e.g., apparently large

amplitude or apparent epileptic spikes).

When we averaged A’s across subjects, we first converted A’ into

z-scores using a logit transform to normalize the distribution. All

statistical tests, except for the paired t-test to quantify the

attentional effects (see below), were done on the z-scores. For

visualization of results, we transformed the mean and mean6one

standard error of the z-scores back to A’ with an inverse logit

transform.

Time-frequency decoding
Optimally combining event-related power at each time-

frequency point across many channels in a circumscribed

anatomical structure, we characterized information at each time-

frequency point without any prior assumptions about particular

frequency bands and particular time points (Figure 2, top). For the

statistical analysis, we smoothed the decoding map for each subject

with a 2D Gaussian kernel in time and frequency (565 pixels, with

std = 2 pixels) then averaged across subjects. We calculated p-

values using two-tailed t-tests against chance (z(A’) = 0 or A’ = 0.5).

We corrected for multiple comparisons using false discovery rate

corrections (FDR q,0.1) [59].

Time course of decoding
Optimally combining event-related power across frequencies

and channels, we characterized information in time in each

anatomical region (Figure 2, bottom). No smoothing was applied

in the time dimension to accurately estimate the latency of

decoding. P-values from two-tailed t-tests against chance (A’ = 0.5)

were calculated and corrected for multiple comparisons by FDR

(q,0.05). The first time point when the decoding became

significant was defined as the latency of decoding (Table 1).

Attention effects
We analyzed the effects of task-relevant attention by comparing

the decoding accuracy between the emotion- and the gender-

discrimination sessions. In Figure 5B, for example, we subtracted

the decoding accuracy for discriminating face vs. checkerboard

(A’fc) in sessions when subjects discriminated the gender from that

when they discriminated the emotion for each subject. For this

analysis, we used the raw A’ for subtraction and performed the

paired t-test at each time (Figure 5B) or time-frequency point

(Figure 5C), because the difference of the raw A’ was normally

distributed.

4 subjects performed each task once and 3 subjects performed

each task twice, once in the uni-directional and once in the bi-

directional morph condition. In total, 10 sessions of the emotion

task were paired with 10 sessions of the gender task in each subject,

equated in the morph direction condition.

Single-electrode decoding and searchlight decoding
For single-electrode and searchlight decoding (Figure 6), we

combined event-related power during the static period (100–

900 msec after the onset of the static stimuli) or the morph period

(100–900 msec after the onset of the morphing). To roughly

equate the number of inputs to the classifier, we downsampled the

event-related power along the frequency dimension by 1/6 for

searchlight decoding.

For the lateral temporal grid contacts, the inter-electrode

distance was uniform. Thus we used a searchlight with a radius of

approximately 5 mm, which covered 4 neighboring electrodes for

all subjects. For the ventral lateral cortex, electrodes were placed

differently for each subject. In order to retain regional specificity,

we used a fixed radius, which was 1/10 of the diameter of the

cerebral hemisphere. This radius contained 4 electrodes on

average.

Laterality analysis
For the laterality analysis (Figure 7), we combined event-related

power along frequencies, time (100–900 msec from the onset of

the morph period) and electrodes within each hemispheric region.

The electrodes were grouped either in the anterior or posterior

half of the lateral temporal cortex, and the left or the right

hemisphere of the ventral temporal cortex. We downsampled the

event-related power along the frequency dimension by 1/6.

Supporting Information

Figure S1 Standard ERP and spectrogram analysis (1) A–H)

Analysis of channel 75 for subject 153 (session 1). A ERP analysis.

The average traces of field potentials are shown for fearful faces

(80 trials, thick blue), happy faces (80 trials, thick red) and

checkerboards (40 trials, thin black). This electrode showed large

positive potential to faces at around 200 msec from the onset of

the stimuli (t = 0 sec), but no such clear peak around the onset of

the dynamic morph (t = 1 sec). B T-score for the difference

between face and checkerboard (red) and between fearful and

happy faces (blue). C–E Mean time-frequency spectrogram for

fearful (C), happy (D) and checkerboard (E) conditions. Increased

power around 100 Hz is seen at just after the onset of both static

(t = 0 sec) and morph (t = 1 sec) period for faces (C and D) but not

for checkerboards (E). Mean of the spectrogram for each trial is

color-coded in log-scale. See the bar at the right for color scale. F

and G T-scores for the difference between faces and checker-

boards (F) and between fearful and happy faces (G), showing

strong difference between conditions in high frequencies, which

was not evident in the ERP analysis (A and B). See the bar at the

right for color scale. H Relative power increase in the high-gamma

bands (50–150 Hz). Mean high gamma power for fearful (blue),

happy (red) and checkerboard (black) conditions are plotted, with

the shades indicating one standard error of the mean across trials.

The high-gamma power for this electrode increased relative to the

baseline to faces, but not to checkerboard, at the onset of the static
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period. During the morph period, it increased even higher for

fearful than happy faces.

Found at: doi:10.1371/journal.pone.0003892.s001 (3.21 MB TIF)

Figure S2 Standard ERP and spectrogram analysis (2) A–H)

Analysis of channel 74 for subject 153 (session 1). A ERP analysis.

This electrode showed much larger negative and positive potential

to faces at around 200 msec from the onset of the stimuli than

channel 75. B T-score for the difference between face and

checkerboard (red) and between fearful and happy faces (blue). C–

E Mean time-frequency spectrogram for fearful (C), happy (D) and

checkerboard (E) conditions. (E). Mean of the spectrogram. (F and

G) T-scores for the difference between faces and checkerboards (F)

and between fearful and happy faces (G). See the bar at the right

for color scale. H Relative power increase in the high-gamma

bands (50–150 Hz). Mean high gamma power for fearful (blue),

happy (red) and checkerboard (black) conditions are plotted, with

the shades indicating one standard error of the mean across trials.

Found at: doi:10.1371/journal.pone.0003892.s002 (3.43 MB TIF)

Figure S3 Electrode 74 and 75 are marked by green and blue

circles, respectively, in the right ventral temporal cortex.

Found at: doi:10.1371/journal.pone.0003892.s003 (8.22 MB TIF)
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