An Approach to Interpreting Spirometry

TIMOTHY J. BARREIRO, D.O., and IRENE PERILLO, M.D. University of Rochester School of Medicine and Dentistry, Rochester, New York

Spirometry is a powerful tool that can be used to detect, follow, and manage patients with lung disorders. Technology advancements have made spirometry much more reliable and relatively simple to incorporate into a routine office visit. However, interpreting spirometry results can be challenging because the quality of the test is largely dependent on patient effort and cooperation, and the interpreter's knowledge of appropriate reference values. A simplified and step wise method is key to interpreting spirometry. The first step is determining the validity of the test. Next, the determination of an obstructive or restrictive ventilatory patten is made. If a ventilatory pattern is identified, its severity is graded. In some patients, additional tests such as staticlung volumes, diffusing capacity of the lung for carbon monoxide, and bronchodilator challenge testing are needed. These tests can further define lung processes but requiremores ophisticate dequipment and expertise available only in apulmonary function laboratory. (Am Fam Physician 2004; 69:1107-14. Copyright © 2004 American Academy of Family Physicians.)

hronic obstructive pulmonary disease (COPD) is the most common respiratory disease and the fourth leading cause of death in the United States.¹ Despite preventive efforts, the number of new patients with COPD has doubled in the past decade, and this trendislikelytocontinue.2,3 Evidence indicates that a patient's history and physical examinationareinadequatefordiagnosing mild and moderate obstructive ventilatory impairments.⁴ Although a complete pulmonaryfunctiontestprovidesthemost accurate objective assessment of lung impairment, spirometry is the preferred test for the diagnosis of COPD because it can obtain adequate information in a costeffective manner.

A great deal of information can be obtained from a spirometry test; however, the results must be correlated carefully with clinical and roentgenographic data for optimal clinical application. This article reviews the indications for use of spirometry, provides a stepwise approach to its interpretation, and indicates when additional tests are warranted.

Background

The National Health Survey of 1988 to 1994 found high rates of undiagnosed and untreated COPD in current and formersmokers.5Population-basedstudieshave identified vital capacity (VC) as a powerful prognosticindicatorinpatientswithCOPD. The Framingham study identified a low forced vital capacity (FVC) as a risk factor for premature death.⁶ The Third National HealthandNutritionalExaminationSurvey and the multicenter Lung Health Study showed potential benefits for patients with earlyidentification, intervention, and treatment of COPD.^{7,8} The Lung Health Study was the first study to show that early identificationandinterventioninsmokerscould affect the natural history of COPD.7 These surveys also showed that simple spirometry could detect mild airflow obstruction, even in asymptomatic patients.

Increased public awareness of COPD led to the formation of the National Lung Health Education Program (NLHEP) as part of a national strategy to combat chronic lung disease.⁹ The World Health Organization and the U.S. National Heart, Lung, and Blood Institute recently published the Global Initiative for Chronic Obstructive Lung Disease to increase awareness of the global burden of COPD Normal lungs can empty more than 80 percent of their volume in six seconds or less.

andtoprovidecomprehensivetreatmentguidelinesaimedatdecreasingCOPD-relatedmorbidity and mortality.¹⁰

Spirometry Measurements and Terminology

Spirometry measures the rate at which the lung changes volume during forced breathing maneuvers.Spirometrybeginswithafullinhala-

TABLE 1 Glossary

Spirometric values

- FVC—Forced vital capacity; the total volume of air that can be exhaled during a maximal forced expiration effort.
- FEV_1 —Forced expiratory volume in one second; the volume of air exhaled in the first second under force after a maximal inhalation.
- FEV₁/FVC ratio—The percentage of the FVC expired in one second.
- FEV₆—Forced expiratory volume in six seconds.
- $FEF_{25-75\%}$ —Forced expiratory flow over the middle one half of the FVC; the average flow from the point at which 25 percent of the FVC has been exhaled to the point at which 75 percent of the FVC has been exhaled.
- MVV—Maximal voluntary ventilation.

Lung volumes

- ERV—Expiratory reserve volume; the maximal volume of air exhaled from endexpiration.
- IRV—Inspiratory reserve volume; the maximal volume of air inhaled from endinspiration.
- RV—Residual volume; the volume of air remaining in the lungs after a maximal exhalation.
- V_T —Tidal volume; the volume of air inhaled or exhaled during each respiratory cycle.

Lung capacities

- FRC—Functional residual capacity; the volume of air in the lungs at resting endexpiration.
- IC—Inspiratory capacity; the maximal volume of air that can be inhaled from the resting expiratory level.

TLC—Total lung capacity; the volume of air in the lungs at maximal inflation.

VC—Vital capacity; the largest volume measured on complete exhalation after full inspiration.

tion, followed by a forced expiration that rapidly empties the lungs. Expiration is continued for as long as possible or until a plateau in exhaled volume is reached. These efforts are recorded and graphed. (A glossary of terms used in this article can be found in *Table 1*.)

Lung function is physiologically divided into fourvolumes:expiratoryreservevolume,inspiratory reserve volume, residual volume, and tidal volume. Together, the four lung volumes equal the total lung capacity (TLC). Lung volumes and their combinations measure various lung capacities such as functional residual capacity (FRC), inspiratory capacity, and VC. *Figure 1*¹¹ shows the different volumes and capacities of the lung.

Themostimportantspirometricmaneuveristhe FVC. To measure FVC, the patient inhales maximally, then exhales as rapidly and as completely as possible. Normal lungs generally can empty more than 80 percent of their volume in six seconds or less. The forced expiratory volume in one second (FEV₁) is the volume of air exhaled in the first second of the FVC maneuver. The FEV₁/FVC ratio is expressed as a percentage (e.g., FEV₁ of 0.5 Ldivided by FVC of 2.0 Lgives an FEV₁/FVC ratio

Lung Volumes and Capacities

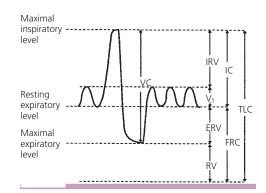


FIGURE 1. Lung volumes and capacities.

Reprinted with permission from Gold WM. Pulmonary function testing. In: Murray JF, Nadel JA, eds. Textbook of respiratory medicine. 3d ed. Philadelphia: Saunders, 2000:783. of 25 percent). The absolute ratio is the value used in interpretation, not the percent predicted.

Some portable office spirometers replace the FVC with the FEV₆ for greater patient and technician ease. The parameter is based on a six-secondmaneuver, which incorporates astandard time frame to decrease patient variability and the risk of complications. One of the pitfalls of using this type of spirometer is that it must be calibrated for temperature and water vapor. It should be used with caution in patients with advanced COPD because of its inability to detect very low volumes or flows. However, the FEV₁/FEV₆ ratio provides accurate surrogate measurefor the FEV1/FVC ratio.12 The reported FEV1 and FEV6 values should be rounded to the nearest 0.1 L and the percent predicted and the FEV₁/FEV₆ ratio to the nearest integer.¹³

Different spirographic and flow volume curves are shown in *Figure* 2.¹¹ It is important to understand that the amount exhaled during the first second is a constant fraction of the FVC, regardless of lung size. The significance of the FEV₁/FVC ratio is twofold. It quickly identifies patients with airway obstruction in whom the FVC is reduced, and it identifies the cause of a

TABLE 2

Ν	ormal	Va	lues	ot	Pı	ulmo	nary	Fun	ction	Test	ts
---	-------	----	------	----	----	------	------	-----	-------	------	----

Pulmonary function test	Normal value (95 percent confidence interval)				
FEV ₁	80% to 120%				
FVC	80% to 120%				
Absolute FEV ₁ /FVC ratio	Within 5% of the predicted ratio				
TLC	80% to 120%				
FRC	75% to 120%				
RV	75% to 120%				
Dlco	>60% to <120%				

DLCO = diffusing capacity of lung for carbon monoxide.

Adapted with permission from Salzman SH. Pulmonary function testing: tips on how to interpret the results. J Resp Dis 1999;20:812. low FEV₁. Normal spirometric parameters are shown in *Table 2*.¹⁴

Indications for Office Spirometry

Spirometry is designed to identify and quantify functional abnormalities of the respiratory system. The NLHEP recommends that primary care physicians perform spirometry in patients 45 years of age or older who are

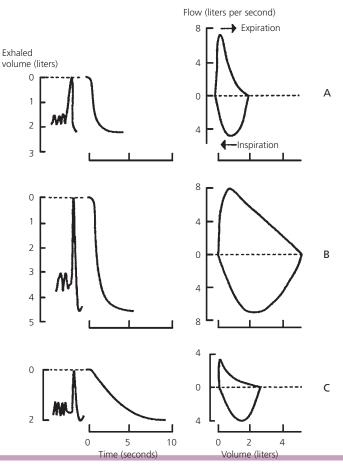


FIGURE2.Spirogramsandflowvolumecurves.(A)Restrictiveventilatorydefect. (B) Normal spirogram. (C) Obstructive ventilatory defect.

Reprinted with permission from Gold WM. Pulmonary function testing. In: Murray JF, Nadel JA, eds. Textbook of respiratory medicine. 3d ed. Philadelphia: Saunders, 2000:805.

TABLE 3 Indications for Spirometry

Detecting pulmonary disease

History of pulmonary symptoms Chest pain or orthopnea Cough or phlegm production Dyspnea or wheezing Physical findings Chest wall abnormalities Cyanosis Decreased breath sounds Finger clubbing Abnormal laboratory findings Blood gases Chest radiograph

Assessing severity or progression of disease

- Pulmonary diseases Chronic obstructive pulmonary disease Cystic fibrosis Interstitial lung diseases Sarcoidosis
- Cardiac diseases Congestive heart failure Congenital heart disease Pulmonary hypertension

Neuromuscular diseases Amyotrophic lateral sclerosis Guillain-Barré syndrome Multiple sclerosis Myasthenia gravis

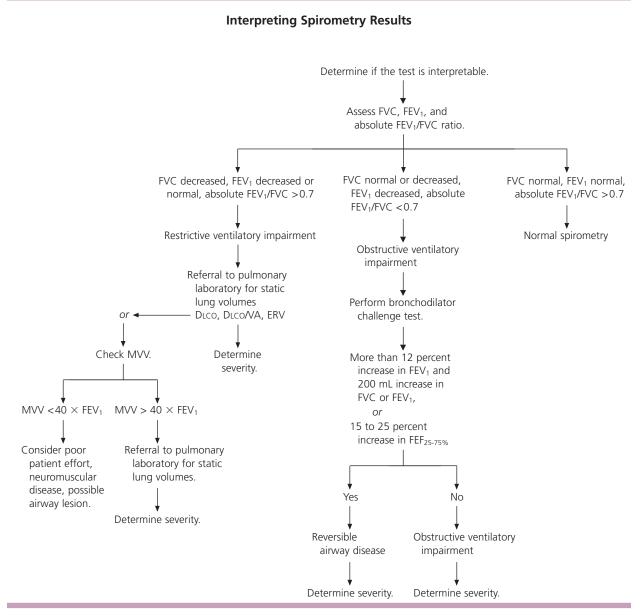
Risk stratification of patients for surgery

- Thoracic surgeries Lobectomy Pneumonectomy
- Cardiac surgeries Coronary bypass Correction of congenital abnormalities Valvular surgery
- Organ transplantation
- General surgical procedures Cholecystectomy Gastric bypass

Evaluating disability or impairment

Social Security or other compensation programs Legal or insurance evaluations

TABLE 4 Contraindications to Use of Spirometry


Acute disorders affecting test performance (e.g., vomiting, nausea, vertigo) Hemoptysis of unknown origin (FVC maneuver may aggravate underlying condition.) Pneumothorax Recent abdominal or thoracic surgery Recent eye surgery (increases in intraocular pressure during spirometry) Recent myocardial infarction or unstable angina Thoracic aneurysms (risk of rupture because of increased thoracic pressure)

current or former smokers; in patients who have a prolonged or progressive cough or sputum production; or in patients who have a history of exposure to lung irritants.9 Other indications for spirometry are to determine the strength and function of the chest, follow disease progression,^{15,16} assess response to treatment,^{17,18} and obtain baseline measurements before prescribing drugs that are potentially toxic to the lungs, such as a miodarone (Cordarone)andbleomycin(Blenoxane).¹⁹Spirometry also is helpful in preoperative risk assessment for many surgeries²⁰⁻²³ and often is used in workers' compensation and disability claims to assess occupational exposure to inhalation hazards.24 Tables 3 and 4 list indications and contraindications for spirometry.

Interpreting Spirometry Results

Spirometry requires considerable patient effort and cooperation. Therefore, results must be assessed for validity before they can be interpreted.^{17,25} Inadequate patient effort can lead tomisdiagnosisandinappropriate treatment. An algorithm for interpreting spirometry results is given in *Figure 3*.

The clinical context of the test is important because parameters in patients with mild disease can overlap with values in healthy persons.²⁶ Normalspirometryvaluesmayvary, and interpreBarreiro T, Perillo I. An approach to interpreting spirometry. American Family Physician. 2004 Mar 1;69(5):1107-14.

 $\label{eq:FIGURE3.Algorithm} for interpreting results of spirometry. ({\tt DLco=diffusing capacity} of lung for carbon monoxide; {\tt VA=alveolarvolume.})$

The absolute FEV₁/FVC ratio distinguishes obstructive from restrictive spirometry patterns.

who are sitting during the test compared with patients who are supine. FVC is about 2 percent greater in patients who are standing compared with patients who are supine.

Todeterminethevalidityofspirometric results, at least three acceptable spirograms must be obtained. In each test, patients should exhale for at least six seconds and stop when there is no volume change for one second. The test session is finished when the difference between the two largest FVC measurements and between the two largest FEV₁ measurements is within 0.2 L. If both criteria are not met after three maneuvers, the test should not be interpreted. Repeat testing should continue until the criteria are met or until eight tests have been performed.²⁶

Figure 4²⁵ shows normal flow-volume and time-volume curves. Notice that the lines of the flow-volume curve are free of glitches and irregularities. The volume-time curve extends longer than six seconds, and there are no signs of early termination or cutoff.

If the test is valid, the second step is to determine whether an obstructive or restrictive ventilatory pattern is present. When the FVC

The Authors

TIMOTHY J. BARREIRO, D.O., is a second-year pulmonary disease and critical care medicine fellow at the University of Rochester (N.Y.) School of Medicine and Dentistry, Strong Memorial Hospital. Dr. Barreiro earned his medical degree from Ohio University College of Osteopathic Medicine, Athens, and completed an internal medicine residency at Allegheny General Hospital in Pittsburgh, Pa.

IRENE PERILLO, M.D., is assistant professor of medicine and director of the outpatient pulmonary clinic at the University of Rochester School of Medicine and Dentistry, Strong Memorial Hospital. Dr. Perillo earned her medical degree from State University of New York Upstate Medical University, Syracuse, and completed an internal medicine residency, and pulmonary and critical care fellowship at the University of Rochester School of Medicine and Dentistry.

Address correspondence to Timothy J. Barreiro, D.O., University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 692, Rochester, NY 14642 (e-mail: Timothy_Barreiro@urmc.rochester.edu). Reprints are not available from the authors.

and FEV₁ are decreased, the distinction between an obstructive and restrictive ventilatory pattern depends on the absolute FEV₁/FVC ratio. If the absolute FEV₁/FVC ratio is normal or increased, a restrictive ventilatory impairment may be present. However, to make a definitive diagnosis of restrictive lung disease, the patient should be referred to a pulmonary laboratory for static lung volumes. If the TLC is less than 80 percent, the pattern is restrictive, and diseases such as pleural effusion, pneumonia, pulmonary fibrosis, and congestive heart failure should be considered.

A reduced FEV₁ and absolute FEV₁/FVC ratio indicates an obstructive ventilatory pattern, and bronchodilator challenge testing is recommended to detect patients with reversible airway obstruction (e.g., asthma). A bronchodilator is given, and spirometry is repeated after several minutes. The test is positive if the FEV₁ increases by at least 12 percent and the FVC increases by at least 200 mL. The patient should not use any bronchodilator for at least 48 hours before the test. A negative bronchodilator response does not completely exclude the diagnosis of asthma.

Themid-expiratoryflowrate (FEF_{25-75%}) is the average forced expiratory flow rate over the middle 50 percent of the FVC. It can help in the diagnosis of an obstructive ventilatory pattern. Because it is dependent on FVC, the FEF_{25-75%} is highly variable. In the correct clinical situation, a reduction in FEF_{25-75%} of less than 60 percent of that predicted and an FEV₁/FVC ratio in the low to normal range may confirm airway obstruction.²⁹

The maximal voluntary ventilation (MVV) maneuver is another test that can be used to confirm obstructive and restrictive conditions. The patient is instructed to breathe as hard and fast as possible for 12 seconds. The result is extrapolated to 60 seconds and reported in liters per minute. MVV generally is approximately equal to the $FEV_1 \times 40$. A low MVV can occur in obstructive disease but is more common in restrictive conditions. If the MVV is lowbut FEV_1 and FVC are normal, poor patient

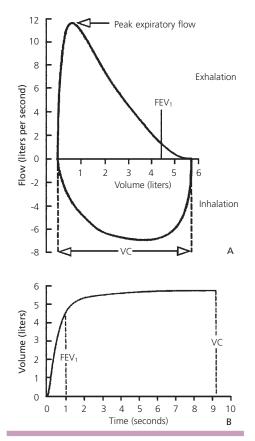


FIGURE 4. Normal spirometric flow diagram. (A) Flow-volume curve. (B) Volume-time curve. The smooth lines, expiratory time of greater than six seconds, and quick peak of the peak expiratory flow rate indicate a good spirometric effort.

Reprinted with permission from Crapo RO. Pulmonaryfunction testing. N Engl J Med 1994;331:28.

effort, a neuromuscular disorder, or major airway lesion must be considered.

Once the ventilatory pattern is identified, the severity of the disease must be determined. The American Thoracic Society has developed a scale to rate the severity of disease based on predicted FEV₁ and TLC.²⁹

The final step in interpreting spirometry is to determine if additional testing is needed to further define the abnormality detected by spirometry. Measurement of static lung volumes, including FRC, is required to make a definitive diagnosis of restrictive lung disease.

Final Comment

Basic spirometry can be performed in the family physician's office with relative ease and inexpensive equipment. Inmost cases, office spirometry provides an adequate assessment of pulmonary function. Inaddition, spirometry may be used to address major issues in clinical management and health screening.

The authors indicate that they do not have any conflicts of interest. Sources of funding: none reported.

REFERENCES

- Murray CJ, Lopez AD. Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 1996;274:740-3.
- Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997;349: 1498-504.
- Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997;349:1436-42.
- Holleman DR Jr, Simel DL. Does the clinical examination predict airflow limitation? JAMA 1995;273: 313-9.
- Mannino DM, Gagnon RC, Petty TL, Lydick E. Obstructive lung disease and low lung function in adults in the United States: data from the National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2000;160:1683-9.
- Kannel WB, Hubert H, Lew EA. Vital capacity as a predictor of cardiovascular disease: the Framingham study. Am Heart J 1983;105:311-5.
- Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV₁. The Lung Health Study. JAMA 1994;272:1497-505.
- Harris T, Woteki C, Briefel RR, Kleinman JC. NHANES III for older persons: nutrition content and methodological considerations. Am J Clin Nutr 1989;50(5 Suppl):1145-9, 1231-5.
- Petty TL, Weinmann GG. Building a national strategy for the prevention and management of and research in chronic obstructive pulmonary disease. National Heart, Lung, and Blood Institute Workshop Summary. Bethesda, Maryland, August 29-31, 1995. JAMA 1997;277:246-53.
- 10. Pauwels RA, Buist AS, Calverley PM, Jenkins CR,

Hurd SS; GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256-76.

- Gold WM. Pulmonary function testing. In: Murray JF, Nadel JA, eds. Textbook of respiratory medicine, 3d ed. Philadelphia: Saunders, 2000:781-871.
- Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999; 159:179-87.
- Ferguson GT, Enright PL, Buist AS, Higgins MW. Office spirometry for lung health assessment in adults: A consensus statement from the National Lung Health Education Program. Chest 2000;117: 1146-61.
- 14. Salzman SH. Pulmonary function testing: tips on how to interpret the results. J Respir Dis 1999;20:809-22.
- Alhamad EH, Lynch JP 3d, Martinez FJ. Pulmonary function tests in interstitial lung disease: what role do they have? Clin Chest Med 2001;22:715-50,ix.
- Flaherty KR, Martinez FJ. The role of pulmonary function testing in pulmonary fibrosis. Curr Opin Pulm Med 2000;6:404-10.
- 17. Colp CR. Interpretation of pulmonary function tests. Chest 1979;76:377-8.
- Rosenberg DM, Weinberger SE, Fulmer JD, Flye MW, Fauci AS, Crystal RG. Functional correlates of lung involvement in Wegener's granulomatosis. Use of pulmonary function tests in staging and follow-up. Am J Med 1980;69:387-94.
- Kanji Z, Sunderji R, Gin K. Amiodarone-induced pulmonary toxicity. Pharmacotherapy 1999;19:1463-6.
- 20. Dunn WF, Scanlon PD. Preoperative pulmonary function testing for patients with lung cancer. Mayo Clin

Proc 1993;68:371-7.

- 21. Celli BR. What is the value of preoperative pulmonary function testing? Med Clin North Am 1993;77:309-25.
- 22. Culver BH. Preoperative assessment of the thoracic surgery patient: pulmonary function testing. Semin Thorac Cardiovasc Surg 2001;13:92-104.
- Powell CA, Caplan CE. Pulmonary function tests in preoperative pulmonary evaluation. Clin Chest Med 2001;22:703-14, viii.
- 24. Sood A, Redlich CA. Pulmonary function tests at work. Clin Chest Med 2001;22:783-93.
- 25. Crapo RO. Pulmonary-function testing. N Engl J Med 1994;331:25-30.
- Crapo RO, Morris AH. Pulmonary function testing: sources of error in measurement and interpretation. South Med J 1989;82:875-9.
- 27. Petty TL. Simple office spirometry. Clin Chest Med 2001;22:845-59.
- Margolis ML, Montoya FJ, Palma WR Jr. Pulmonary function tests: comparison of 95th percentile-based and conventional criteria of normality. South Med J 1997;90:1187-91.
- 29. Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. Am J Respir Crit Care Med 1991;144:1202-18.