SPIN TRAPPING: ESR PARAMETERS OF SPIN ADDUCTS*

GARRY R. BUETTNER

GSF Forschungszentrum, Institut für Strahlenbiologie, D-8042 Neuherberg, FRG

Abstract—Spin trapping has become a valuable tool for the study of free radicals in biology and medicine. The electron spin resonance hyperfine splitting constants of spin adducts of interest in this area are tabulated. The entries also contain a brief comment on the source of the radical trapped.

Key words—ESR (electron spin resonance), Free radicals, Spin trapping, DMPO (5,5-Dimethylpyrroline-1-oxide), PBN (α-phenyl-*N*-tert-butyl nitrone), MNP (2-methyl-2-nitrosopropane)

INTRODUCTION

Spin trapping

In biology and medicine free radicals are now of intense interest because they appear to be involved in many different aspects of metabolism, ranging from oxygen consumption to xenobiotic metabolism. ESR (electron spin resonance) is considered the least ambiguous method for the detection of free radicals. Unfortunately, it is not always possible to directly observe the free radicals of interest as their concentration may be below the limit of detection by the present generation of ESR spectrometers ($\sim 10^{-8}$ M, a practical limit is probably $\sim 10^{-6}$ M). In addition, some radicals, even if present at a concentration greater than 10⁻⁸ M, are not observable at room or physiological temperature as their spin relaxation times are very short, making their linewidth too broad to be observed by ESR. Examples are O_2 , OH, alkoxyl radicals, and sulfurcentered radicals such as the cysteinyl or glutathiyl free radicals. Spin trapping provides, in principle, a means to overcome these problems.

*The abbreviations used in this article appear in the appendix.

The experiment. Spin trapping involves the addition reaction of the free radical of interest to a diamagnetic compound, spin trap, to produce a relatively long-lived free radical product, spin adduct (usually a nitroxide), which hopefully accumulates to a concentration high enough to be studied by ESR. Nitroxides are relatively stable because the unpaired electron is resonance stabilized. In favorable cases the resulting ESR spectrum allows the identification of the original radical. If no unique assignment is feasible, it is still possible to learn something about the nature of the radical, i.e. whether it is carbon-centered, oxygen-centered, nitrogen-centered, etc. Spin traps do not react readily with resonance-stabilized radicals and thus are of little help in increasing their disibility; however, resonance-stabilized radicals are the easiest to observe directly. Direct ESR observation generally provides the most information about the radical, unfortunately many radicals cannot be observed directly by ESR. Thus, spin trapping has become a valuable tool for the study of free radical processes.

Two kinds of spin traps have been developed, nitrone and nitroso compounds. Nitroso compounds, such as MNP, can provide considerably more information than nitrones as the radical to be trapped adds directly to the nitroso nitrogen,

$$R - N = O + R_{r} \longrightarrow R - \dot{N} - O,$$

thereby increasing the amount of information in the hyperfine splitting parameters. Unfortunately, oxygen-

Dr. Garry R. Buettner earned his Ph.D. in 1976 working with Dr. Robert E. Coffman in the chemistry department at the University of Iowa. While he was a postdoctoral fellow with Dr. Larry Oberley in the Radiation Research Laboratory at Iowa he became interested in the use of spin trapping to study free radical processes; in particular oxygen radical production. He is currently a Fulbright Scholar and guest scientist at the GSF where he continues to pursue his interest in oxygen radicals. He is working in the pulse radiolysis group of Drs. Bors and Saran where he is examining the reaction of superoxide with various metal complexes.

centered radical adducts of MNP are quite unstable, thus the nitrones are the spin traps of choice for the study of oxygen-centered radicals.

With nitrones some information is lost because the trapped radical adds to a carbon adjacent to the nitrogen.

$$\begin{array}{cccc} H_{\beta} & O & H_{\beta} & O \\ \downarrow & \downarrow & \\ R_{1} - C = N - R_{2} + R_{x}^{*} \longrightarrow R_{1} - C - N - R_{2} \\ & & R_{1} - C - N - R_{2} \\ & & R_{2} \end{array}$$

However, the most popular spin traps, DMPO, PBN, and POBN have a β -hydrogen that can provide considerable information about the radical trapped.

Hyperfine splitting. The information about the radical trapped is contained in the hyperfine splitting of the spin adducts. The multiplicity and magnitude of the splittings provide this information. Excellent didactic presentations on nitroxide hyperfine splittings have been given by Janzen et al.¹ and Thornalley.² Thus, these references should be consulted by those wanting an introduction to the fundamental aspects of spin trapping and the ESR spectroscopy of nitroxides.

Kotake et al.³ have demonstrated that ENDOR has the potential to provide information that can assist in the interpretation of spin trapping experiments. For example, Evans et al.⁴ have used spin trapping to study the free radical aspects of unsaturated fatty acid autoxidation. Using ESR and ENDOR as well as selective deuteration of linoleic acid, the site of radical formation and coupling constants of all nearby hydrogens were extracted. Thus, ENDOR may prove to be quite. useful in determining primary radical structure in spin trapping experiments.

Mossoba et al.⁵ have used out-of-phase ESR, i.e. 90° out-of-phase detection, to study the long-range proton hyperfine coupling constants of DMPO. This approach allowed the determination of the hyperfine coupling constants of all the protons (as well as the deuterium, when present) for the 'COOH, 'CH₃, 'CD₃, 'OH and 'OD spin adducts. The superhyperfine coupling constants of the distant protons are small, less than one-half gauss; thus, oxygen must be excluded to produce the narrow linewidths required for successful analysis. They demonstrated that deuterated DMPO (although not yet synthesized and studied) in out-of-

3See Refs. 77KO01, 82KO04, 84JA04, and 86JA01 (and references therein). See Refs. 84EV01 and 85EV01.

'See Ref. 64M004.

phase ESR experiments could be a useful tool for the identification of unknown radicals.

Isotopic labelling using ¹³C, ¹⁵N or ¹⁷O has been of great value in the identification of spin adducts. These labelled spin adducts present a different multiplicity in the ESR spectrum from that usually observed with $^{12}C_{1}$ ¹⁴N or ¹⁶O. Labelled spin adducts are clearly indicated in this tabulation.

ESR spectra from spin trapping experiments often require simulation to extract the hyperfine coupling constants. This is especially true if the spectrum consists of more than one component. A flexible and efficient computer program that is designed for use with microprocessors is presented by Oehler and Janzen.⁶ This program easily handles the routine spectra obtained in spin trapping experiments.

Solvent effects. The solvent can have a major effect on the hyperfine splitting observed for a spin adduct. In fact, changes in solvent can produce a larger effect on the observed hyperfine splitting than changes in the spin adduct structure. (Thus, researchers need to clearlystate the exact nature of the solvent used during the collection of ESR spectra in spin trapping experiments.) In general, increases in solvent polarity produce an increase in the nitrogen-hyperfine splitting as the spin density on the nitrogen increases. Thus, the β-hydrogen splitting will usually (but not always) decrease. At present, there is no theoretical approach to accurately predict how A_N and A_H will change with the nature of the solvent. However, empirical approaches are being investigated. Janzen et al.⁷ have demonstrated that for a particular spin adduct in different solvents, $A_{\rm H}$ and $A_{\rm N}$ can be linearly correlated with excellent correlation coefficients. (When available, these linear relationships are included in the tables.) In addition, the hyperfine splittings can often be linearly correlated with physical-chemical parameters of the solvent. Thus, in principle, both A_N and A_H can be predicted for a spin adduct in any solvent from just a few measurements. However, this area of research is in its infancy. The best means of spin adduct identification still lies in a comparison to previously identified adducts or through well-defined chemistry in the same solvent.

Tables of spin adduct ESR parameters

The following tables summarize the hyperfine splitting constants of spin adducts. In addition, isotropic

See Refs. 85JA01 and 82JA01.

See Ref. 86TH01:

[&]quot;See Ref. 820E01.

⁷See Refs. 78JA01 and 82JA01.

g-values are given when measured, as well as a brief comment on the source of the radical. The units chosen for this tabulation of ESR hyperfine coupling constants are gauss, G. The SI unit for magnetic flux density is tesla, T. To convert from gauss to tesla use

$$T = 1 \times 10^{-4} G$$

or for millitesla

$$mT = 0.1 G$$

Thus, the conversion from one unit to another is quite simple.

The assignment for the trapped radicals presented in these tables is as interpreted by the authors of the original papers. If the radical is given in quotes, e.g. "OH", the authors have interpreted the experiments to mean that this radical has not been formed, but rather the chemistry of the experiment has resulted in the formation of a spin adduct as if the radical were formed. As research continues in the area of free radical biology and medicine, a reinterpretation of some published data may be appropriate. This appears especially to be true with regard to oxygen-centered radicals.

Although these tables contain a large number of entries, they by no means are intended to provide a complete summary of the spin trapping literature. Only a small portion of the early work is included here as the Landolt-Börnstein series (see Ref. 79FO01) contains tabulations of spin adduct spectral parameters (up to 1978) as an integral part of their summary of the nitroxide radical data. The literature now contains over 100 compounds that are of potential use as spin traps; thus, researchers should not confine themselves to only those spin traps included in this summary if other spin traps would provide an experimental advantage. A computer data base of spin adduct spectroscopic parameters is being assembled (DuBose and Janzen, in preparation). This will certainly complement this tabulation and provide a means for continuous updating as spin trapping research evolves.

There are now many excellent reviews on various aspects of spin trapping. These are listed in the references and are noted with an asterisk that preceeds the reference code.

Happy Spin Trapping!

Adduct	Solvent	A _N /G	A _H /G	Other A's/G, [g-value], Source	Reference(s)
н.	Benzene	14.43	18.89(2)	photolysis of tri-n-butyl tin hydride	73JA01
H.	Toluene	14.43	18.90(2)	photolysis of alkyl cobalt(III) com- plexes	78MA01
H' and e^- + H ⁺	W	16.7	22.6(2)	radiolysis of water	76SA01
$e^{-} + H^{+}$	AcN	16.10	22,75(2)	Ti(III)-citrate + H ₂ O ₂	80SC01
Н.	W (7)	16.6	22.6(2)	4-aminobenzoic acid + UV light	81CH01
$e^{-} + H'$	W	16.58	22.50(2)	$[2.0054]$, sulfite + light, $t_{12} = 36$ s	81KI01
e^- + H ⁺ (reduction)	₩(P7)	16.0	21.5(2)	sodium borohydride reduction then oxidation	81LO01
e⁻ + H⁺	W(12)	16.0	22.0, 21.8	gamma irradiation of water	82HE01
e ⁻ + H⁺	W(TR7.0)	16.6	22.5(2)	[2.0054] DOPA or catechol + UV	82KA01
н. •	W	16.6	22.5(2)	ultrasound in water	85R101, 82MA01
н.	W	16.6	22.5(2)	ultrasound in water	85R101, 83MA01
н.	W(10)/EtOH 3:2	16.5	22.5(2)	chlorohemin + light	83MA02
H.	w	16.6	22.5(2)	ultrasound with clinical equipment	83MA05
Н.	Toluene	14.33	18.99(2)	cobaltoxime photolysis	82MA06
e^- + H ⁺ (reduction)	W(P7.4)	16.7	22.5(2)	reduction of DMPO by isoniazid + HRP	835101
$e^{-} + H^{+}$	W(P7.0)	16.7	22.4(2)	chloropromazine + UV light	84DE01
e ⁻ + H*	W(P7.0)	16.7	22.4(2)	photolysis of tartrazine	84ME01
н.	W	16.6	22.4(2)	ultrasound	84RE09
e ⁻ , + H*	W(P6.5)	16.4	22.7(2)	CPZ + 270 nm light	85MO01
e ^{-'} + H*	W(7)	16.50	22.50(2)	UV irradiation of Trp	86HO01
H.	W(P7.8)	16.6	22.5(2)	ultrasound	86MA01
н.	W(P7.8) and LPC	15.5	23.4(2)	LPC or serum autoxidation	86MA01
н.	W(P7.0)	16.7	22.4(2)	minocycline + UV light	86PI01
e^- + H ⁺ or H ⁻	W(P7.5)	16.6	22.5(2)	cysteinyl dopa + UV	86PI02
н.	W and Cells	16.5	22.6(2)	radiolytic generation	86SA01
D.	D_2O	16.7	22.6	$A_{\rm D} = 3.3$, radiolysis of D ₂ O	76SA01
D.	D ₂ O(7)	16.6	22.6	$A_{\rm D} = 3.4, 4$ -aminobenzoic acid + light	81CH01

Table 1. DMPO Spin Adduct Parameters

Table 1 (Continued). DMPO Spin Adduct Parameters

Adduct	Solvent	A _N /G	A ₁₁ /G	Other A's/G, [g-value], Source	Reference(s)
e ⁻ + D ⁺	D ₂ O(12)	16.0	21.8?	$A_{\rm D} = 3.3$, gamma irradiation of D ₁ O	82HE01
e⁻ + D*	D ₂ O(7)	16.6	22.5	$A_{\rm D} = 3.4$, (2.0054) photolysis of DOPA	82KA01
D.	Toluene	14.33	18.99	$A_{\rm p} = 2.83$, cobaltoxime photolysis	82MA06
D.	D.O	16.6	22.5	$A_{\rm p} = 3.4$, ultrasound in D ₂ O	85RI01. 82MA0
<u>n</u> .	D.0	16.6	22.5	$A_{\rm D} = 3.4$, ultrasound in D.O.	85R101, 83MA0
e ⁻ + D ⁺	D ₂ O(7)	16.50	22.50	$A_{\rm D} = 3.4$, UV irradiation of Trp	86HO01
ĊH,	Benzene	14.31	20.52	CH ₃ HgI + light	73JA01
°CH ₃	W	16.33	23.24	[2.0052], acctate + SO ₄ ⁻⁷	81Kl01
'CH ₁	W(P7.4)	16.4	23.4	$H_2O_1 + UV + DMSO$	82FI01
·CH3	W(P7.8)	16.50	23.75	adriamycin semiquinone + t-BuOOH or Ph(CH ₃),COOH	84KA01
°CH,	W	16.1	23.0	$A_{\rm H} = 0.473(3), 0.237(6), 0.140(2), 0.238, 0.302; H_2O_1 + DMSO + UV, 90° out-of-phase detection$	84MO04
CH, or C.H.C.H	W(P7.5)	16.3	23.5	procarbazine + HRP	84S102
CH'	W/DMSO 19:1	16.1	23.0	diaziguone ÷ DMSO + light	85MO02
°CH,	W(P7.4)	16.4	23.4	PQR and Trypanosoma cruzi and	86AU01
'CH.	Hanks	15 31	22.00	stimulated neutrophils with DMSO	868802 868801
Chi Chi	W(HEDES7 A)	16.3	22.00 73 A	tert-BuOH + mitochondria	SEKEUI
°CD,	W	16.1	23.0	$A_{\rm H} = 0.237(6), 0.140(2), 0.238, 0.302, A_{\rm D} = 0.072(3); DMSO + H O + 11V, 90° aut of phase$	84MO04
	Bannena	14 66	20 67	$M_2O_2 + O_4$, so out-of-pliage	731401
	Benzene	14.00	20.07	andialumia of sustan with MoOH	757401
	W	10.	34.7	HO I link and MOU	703701
	W(0)	13.95	22.09	H ₁ U ₁ + light and MeUH	SUMAU2
Снуон	w	15.87	22.57	[2.0053] SU ₄ ⁺ + MeOH	81KIUI
CH ₂ CH,	Benzene	14.20	20.49	$(C_2H_3)Hg + light$	73JA01
CH ₂ CH,	₩(C10.0)	16.2	23.6	Cu catalyzed oxidation of ethylhy- drazine	81AU01
CH₂CH,	Benzene	14.0	20.5	Cu catalyzed oxidation of ethylhy- drazine	81AU01
CH2CH3	₩(P7.5)	. 16.3	23.5	cthyl hydrazine + oxyhemoglobin or Cu(ll)	82AU03
CH ₁ CH,	Benzene	14.2	20.5	ethylhydrazine + oxyhemoglobin or Cu(II)	82AU03
CH ₂ CH ₂ OH	W	15.98	22.83	[2.0057] SO ₄ ⁻ + EtOH, $t_{1/2} = 4.8$ min	81K101
CHIC HOH	Benzene	15.03	22.53	EtOH + BP*	73JA01
сн,с.нон	W(P7.4)	15.8	22.8	microsomes + NADPH + 0.9%	77LA01
LH'C'HOH	. W(P7.5)	15.8	22.9	12.00671 HP + light + EtOH	* 80BU01
C.HO.	W	15.8	22.8	H.O. + UV light + FtOH	81RO01
LH'C.ROH	W(P7.4)	15.8	22.8	$H_{O_1} + F(OH + light)$	80F101
C.HOH	W	15.8	22.9	12 00671 Fenton system	82B1101
сн,стнон	, W	15.8	22.8	Phanerochaete chrysosporium cell extract + EtOH	82FO01
CH.C.HOH	W(P7.4)/EtOH 9-1	15.8	22.9	autoxidation of cysteine with FtOH	82SA01
	W(127 4)/E(01 9.1	15.0	22.7 22 4	$F_{e}(1) + cysteine$	878501
	$W(\mathbf{p}_{1,A})$	16.0	22.4	12(11) + Cysteme 12(1054) + Cysteme	825L01
		15.0	23.0	[2.0034] EIOH + Fe(H)	021E01 93DA03
	₩(B9.0)	13.8	22.0	ium formicicum	
		13.8	22.8	ultrasound in water with EIOH	BORIUI, BOMAUL
		12.0	21.7	cenoxaproten + UV light	83KEUI
HJC HUH	W(P7.0)	15.8	22.8	methylene blue + ascorbate + light	84BU01
	W(HEPES 7.4)	not g	iven ·	ubisemiquinone radical reactions	84N001
H,C'HOH	W(P7.8)	16.0	23.0	H_2O_2 , EtOH + drug semiquinone	84KA01
H _J C'HOH C'HO!#	W(P7.0)	15,8	23.0	Photofrin II + ascorbate + light	85BU02
LAIC NON-	₩	12.2	22.8	not CH ₃ C'HOH	5CAUL
н,с нон	W(P6.5)	15.9	23.1	CPZ + EtOH + UV light	85MO01
н,с нон	W(P7.4)	16.0	23.2	anthraprazole + ascorbate, Fe(III) and light	86RE02
Hydroxyalkyl (C')	W(P7.4)	15.8	22.8	[2.0055] glyceraldehyde autoxidation	84TH04

.

Adduct	Solvent	A _N /G	A _{II} /G	Other A's/G, [g-value], Source	Reference(s)
Curbon radical	W(P7.4)	sec Ref	. 84TH04	glyceraldehyde autoxidation with	84TH06
Hudmaulkul	W(P6-0)	not	uiven	elyceraldebyde autoridution	84WO01
	W(P74)	16 1	24.4	inconiazid + HRP or POS	85KA02, 83SI01
(CH.).C'OH or	W(6)	15.98	23.95	H.O. + UV and 2-PrOH	80MA02
CHCHCHOOH	(0)	10.70	20170		
(CH ³) ^C OH	W	15.92	23.66	(2.0054), (CH ₃),CHOH + SO ₄ ⁷	81KI01
(CH.),C'OH	WITET AVEIOH 8-1	15.2	22.80	$F_0(11) \pm cystoine$	825F01 ·
(CH.),C'OH	W(P7 8)	16.0	24 1	12	82TE01
(CH.),C'OH	$\mathbf{W}(\mathbf{P}(1))$	15.8	23.9	Fr(11)TPPS + 2.PrOH + light	84FA01
R'7	W(P7 4)	15.0	23.2	isoniazid + HRP	835101
(CH ₃) ₂ COHCH ₂	W(7)	16.0	23.2	gamma irradiation of water, $t_{1/2} \approx$	82HE01
·C(OH)2CH(OH)CH2OH	W(P8.5)	15.8	22.8	(2.0055) DL-glyceraldehyde autoxi- dation	84TH02
n-Butvl	Benzene	14.24	20.41	(C ₄ H _a) ₂ Pb + light	73JA01
'CH ₃ S(O)CH ₃	W(P8.3)	15.8	22.8	hepatic nuclei + NADPH and DMSO	80PA01
Citrate radical	W(P6.5)	15.3	18.6	CPZ + citrate + UV light	85MO01
1-Hydroxybutyl	Benzene	14.89	22.72	$C.H_{\bullet}OH + BP^{*}$	73JA01
2-Hydroxypropyl	Benzene	14.58	23.91	$C_{H}OH + BP^{*}$	73JA01
(CH ₃) ₂ C ⁻ CN	Xylene	14.6	20.4	α , α' -azobisisobutyronitrile + heat, 383 K	70W101
Polycthylene vlycol-C'	W and Cells	15.75	21.6	radiolytic generation	835A01
Ethlene glycol-C'	W and Cells	15.6	22.5	radiolytic generation	835A01
$C(CH_{1})CH(NH_{1}+)CO_{1}$	W(7.4)	15.47	20.00	photolysis of penacillamine disulfide	87DA01
$CH_CH(NH_+)COO =$	W(P7 5)	16.0	22.5	custeinul dona + IIV	86PI02
LaThreening-C'	w(17:5)	15.6	22.5	amma imadiation	RIFTOI
Glycine.C'	Ŵ	15.0	22.6	gamma intadiation	83ET01
L-Arginine HCl-C'	w ·	15.75	21.5	samma irradiation	83FT01
B-Alanine	Ŵ	15.5	21.5	gamma irradiation	835701
CO.7	W(5.5)	15.6	18 7	chlorophyl + light with formate	78HA01
CO ₂ ⁻	W	15.8	19.1	[2.0058] ZnO dispersion + light	79HA01
C0.7	SW .	15 97	18 97	[2,0054] oxalate + SQ.7	816101
	W(P7 0)	15.6	19.9	reduced mitomycin C	811 001
CO ₂ -	W(17.0)	15.0	10.0	reduced initiality of sustain the second	Batteoi
CO ₂ .	₩(7)	13.36	16.2	gamma irradiation of water, $r_{1/2} = 46 \text{ min}$	820201
CO ₂ ⁻	W(P7.0)	15.6	18.7	furocoumarin derivative + light	83DE01
CO ₂ -	W	15.6	18.7	ultrasound in water with formate	85RI01, 83MA01
CO ₁ -	W(P7.0)	15.6	18.7	chlorpromazine + formate and UV light	84DE01
CO, -	W(P11.0)	15.6	18.7	Fe(III)-TPPS + formate + light	84FA01
CO	W(P7.0)	15.6	18.7	photolysis of tartrazine with formate	84ME01
CO2	W	15.6	18.7	$A_{\rm H} = 0.236(6), 0.130(2), 0.243, 0.275; H_2O_2 + formate + UV, 90° out-of-phase detection$	84MO04
CO ₂ -	W(HEPES7.4)	not	given	ubisemiquinone radical reactions	84NO01
CO ₂ ·	W(MS7.0)	not	given	pea chloroplasts + paraquat + light	.85BO01
CO ₂ ⁻	W(P7.0)	15.8	18.6	Photofrin II + ascorbate + formate + light	85BU02
"CO ₂ -"	W	15.6	18.7	blue dye No. 1 + light + formate, not CO. ⁷	85CA01
، ۵ ۵	W(P6.5)	15.8	18.8	CPZ + formate + 11V light	85M001
		15.6	19.7	distinuose + light	8511001
CO ₂ .		13.0 16 4	10./ .	aliziquolis – ligit	OJMICUL OLDIAI
-CU ₂ *.	W(P7.0)	15.0	18.7	chionetracycline + UV	80P101
CO ₂ ⁺	W(P7.4)	15.7	18.8	anthrapyrazole + NADH, formate and light	86RE01
Hydroxypyruvaldehyde (C')	W(P7.4)	14.9	19.6	[2.0056] autoxidation of hydroxypy- ruvaldehyde	86TH07
Sorbitol radical	W(P7.2)	15.9	22.5	ozone + caffeic acid and sorbitol	83GR02
Indole-3-('CH ₂)	W(Ac4.6)	16.0	22.4	indole-3-acetic acid + HRP + H_2O_2	80M004
CH ₂ C ₄ H ₄ NO ₂	W(TK7.4)	15.8	22.4	o-nuronenzyi + microsomal protein	50M(JU2
CH ₂ C ₄ H ₄ NO ₂	. W(TR7.4)	16.0	21.4	$A_{\rm H} = 0.7$, p-nitrobenzyl + micro- somal protein	80MQ02

Table 1 (Continued). DMPO Spin Adduct Parameters

	•			Other A's/G, [g-value],	,
Adduct	Solvent	A _N /G	A _{II} /G	Source	Reference(s)
Uracil radical (1)	₩(12)	16.0	24.5	gamma irradiation of S-bromouracil	82HE01
Uracil radical (2)	W(12)	15.35	21.0	gamma irradiation of 5-bromouracil, $t_{112} = 17 \text{ min}$	82HE01
Phenyl	- Benzene	13.76	19.22	phenylazotriphenylmethane	73JA01
Phenyl	W(B10.2)	15.9	24.8	[2.0045] phenylhydrazine autoxida-	81HI01
Phenyl	Benzene	13.8	19.2	[2.0045] phenylhydrazine autoxida- tion	81HI01
Phenyl ,	W(P7.0)	15.8	24.4	[2.0045] phenylhydrazine + crytho- cytes	81H101
Phenyi	W	15.97	24.30	[2.0053], benzoic acid + SO ₄ ^{T} , $l_{1/2} = 2l$ min	81K101
Fhenyl	W(P7,5)	16.0	24.7	phenylhydrazine and oxyhemoglobin	82AU03
Phenyl	Benzene	13.9	19.4	phenylhydrazine and oxyhemoglobin	82AU03
Phenyl	W(P7,4)	15,8	24.4	[2.0045] phenylhydrazine + eryth-	82HI02
Phenyl	W(P7.4)	15,8	24.4	[2.0045] phenylhydruzine + eryth- rocytes	83HI01
Phenyl	W(P7.4)	15.9	· 24.8	ohenvlhydrazine + HRP or PGS	83S101
Phenyl	W(P7.4)	15,9	24.8	[2.0045] AcPhHZ + oxyhemoglobin or red cells	84'TH03
2-Chlorophenyl	W(P7.5)	15.7	23.4	2-chlorophenylhydrazine and oxy- hemoglobin	82AU03
2-Chlorophenyl	Benzene	13.7	18.8	2-chlorophenylhydrazine and oxy- hemoglobin	82AU03
4-Chlorophenyl	W(P7.5)	15.8	24.2	4-chlorophenylhydrazine and oxy- hemoglobin	82AU03
4-Chlorophenyl	Benzene	13.8	19.5	4-chlorophenylhydrazine and oxy- hemoglobin	82AU03
2-Methylphenyl	W(P7.4)	15.9	23.8	2-methylphenylliydrazine and oxy-	82AU03
2-Methylphenyl	Benzene	13.9	19.1 c	2-methylphenylhydrazine and oxy- hemoglobin	82AU03
3-Methylphenyl	W(P7.5)	15.8	24.3	3-methylphenylhydrazine and oxy- hemoglobin	82AU03
3-Methylphenyl	Benzene	14.1	19.5	3-methylphenylhydrazine and oxy- hemoglobin	82AU03
Benzyl	Benzene	14.16	20.66	$(C_{0}H_{2}CH_{2})_{2}Hg + light$	73JA01
Benzyl	W(P7.5)	16.0	22.0	benzylhydrazine and oxyhemoglobin	82AU03
Benzyl	Benzene	14.1	20.4	benzylhydrazine and oxyhemoglobin	82AU03
a-Hydroxybenzyl	W(TAR3.0)	16.0	22.7	A(13-C) = 8.3, DMHB + ligninase	85HA03
C'H'C.(OH)(CH')	W(TAR3.0)	16.0	22.3	DMHB + ligninase	85HA03
4-NH-C.H.	D,O(9)	16.1	24.95	4-iodoaniline + UV light	81CH01
4-H2NO2SC6H	$D_2O(7)$	15.7	23.73	4-iodobenzenesulfonamide + UV light	81CH01
4-HOOCC,H,	D,O(7)	15.8	24.06	4-iodobenzoic acid + UV light	81CH01
4-CH ₁ C ₁ H ₄	W(8,5)	16.38	23.5	chloramine-T + UV light	85EV03
alpha-Cvanobenzvi	Benzene	14.39	20.63	CIHICHICN + BP*	73JA01
i-Phenylethyl	Benzene	14.20	20.49	C.H.CH.CH. + BP*	73JA01
Stymme ('C-7)	W(P7.6)	16.0	22.4	styrene + HRP + GSH + H_{sOs}	86ST01
Benzoic acid ring C	W	15.95	23.54	12.00531 obthalic acid + SQ.7	81 K 101
Phenyl-4-sulfonate	W(B10.2)	15.9	14.8	[2.0045] phenylhydrazine-4-sulfonate	81HI01
P. promazyl	W(P6.5)	15.0	24 3	CP7 + UV light	85MO01
Renzovi	Benzene	13.99	15 57	$CH_CHO + BP$	731A01
Phenoxymethyl	, Renzene	13.79	19.56	$C_{H,OCH} + BP$	731401
1.Fthorethyl	A Benzene	13.75	20 40		731401
Tetrahudeofurnaul	Benzene	14.20	17 07		731401
Aminoformyl	Renzene	15 72	18 56		731401
Dimethylaminoformyl	Benzene	14 20	17 27		731401
Acetoxyl	CH ₂ Cl ₂	12.5	10.0	$A_{\rm H} = 0.9$, ozone + dimethylacety- lene, -70° C	82PR01
Acetvi	Benzene	14.03	17.87	CH.CHO + BP*	73JA01
Acetyl	CH.CI.	14.0	17.7	ozone + dimethylacetylene - 30°C	82PR01
Ľ	Freen-11	13.9	20.4	ozone + methyl linoleate 40°C	81PR01
Ē. Sala	Freon-11	14.3	20.9	ozone + methyl linoleate	81PR03

Adduct	Solvent	A _N /G	A _{ii} /G	Other A's/G, [g-value], Source	Reference(s)
Dimethylnitrosoamine	· W(P7.4)	15.65	22.25	nitrosoamine + nuclei or micro-	78FL01
Diethylnitrosoumine	W(P7.4)	16.00	24.00	nitrosoamine + microsomes or nu-	78FL01
1-Nitrosopyrtoline	W(P7.4)	15.50	22.80	nitrosoamine + nuclei or micro- somes	78FL01
1-Nitrosopiperidine	W(P7.4)	15.45	23.70	[2.0054] nitrosoamine + nuclei or microsomes	78FL01
C'?	W(TR7.5)	15.9	21.9	[2.007] microsomes	79GR02
C'?	W	14.5	16.2	RSVM + AA	81SM01
C'?	W(EPPS8.0)	15.53	22.0	[2.0015] I-aminocyclopropane-I-car- boxylic acid and Fenton system	82LE01
C'?	W(P7.8) and LPC	16.1	24.5	LPC or scrum autoxidation	86MA01
C'?	W(P7.0)	16.25	22.5	chlortetracyline '+ UV light	° 86P101
C'?	W(P7.4)	15.9	23.0 .	[2.0056] hydroxypyruvaldchyde au- toxidation	86TH07
°CF,	Benzene	13.22	15.54	$A_{\rm F} = 1.01(3), \rm CF_1 l + light$	73JA01
·CCl,	W	14.6	14.6	CCl ₄ + UV then water extraction	82RO02
N,'	W(P7.5)	14.9	14.9	$A_{\rm N} = 3.0, [2.006] \rm HP + azidc + light$	80BU01
N ₃ .	W	14.7	14.7	$A_N = 3.0, e^-$ irradiation	80KE01
¹³ N ₂ '	W	14.7	14.7	$A(15-N) = 4.5, e^{-1}$ irradiation	80KE01
N,'	W	· 14.5	14.5	$A_{\rm N} = 3.1$, methylene blue + light	82HA01
N ₃ .	W	16.9	16.9	$A_{\rm N} = 3.2$, porphyrin photosensitiza- tion	84MO01
N,'	E(OH/W 9:1	13.7	12.2	$A_{\rm N} = 3.1$, 2-phenylbenzoxazole + azide and UV	84RE03
N3.	w	14.70	14.70	$A_N = 2.95$, ultrasound with [Co(NH ₃) ₂ N ₃]Cl ₂	84RE09
″N ₃ ·″	W	16.9	16.9	$A_{\rm N} = 3.2$, Blue dye No. 1 + light	85CA01
N3'	W(P7.6)	14.8	14.2	A(14-N) = 3.1, HRP/H,O, + azide	85KA01
¹⁵ N ₃ .	W(P7.6)	14.8	14.2	A(15-N) = 4.3, HRP/H ₂ O ₂ + azide	85KA01
N3 [.]	W(P7.4)	15.0	14.3	$A_{\rm N} = 3.17$, anthrapyrazole + NADH, azide and light	86RE01
'NH ₂ (D ₂)	D ₂ O(9)	15.9	19.3	$A_N = 1.60$, sulfanilamide + UV light	81CH01
¹³ 'NH ₂ (D ₂)	D ₂ O(9)	15.9	19.3	A(15-N) = 2.24, ¹³ N-sulfanilamide + UV light	81CH01
'NH,+ (D,)	D ₂ O(4)	14.0	18.74	$A_{\rm N} = 3.13$, sulfanilamide + UV light	81CH01
¹³ 'NH ₃ + (D ₃)	D ₂ O(4)	14.0	18.74	A(15-N) = 4.40, ¹³ N-sulfanilamide + UV light	81CH01
'NH ₂	W	15.85	19.03	$A_{\rm N} = 1.71; [2.0054]; \rm NH_2 + SO_4^{-1}$	81KI01
'NH-n-Butyl	Benzene	13.95	16.39	$A_{\rm M} = 1.88$	78JA02
RNHN'H	W(B10)	15.0	16.7	$A_{\rm N} = 2.5$, hydralazine X.O. or red cells	835102, 825101
RNHN'H	W(B10)	15.0	16.7	$A_{\rm N} = 2.56$, hydralazine + HRP	835101
RNHN'H,+	W(Ac5)	14.1	18.5	$A_{\rm w} = 3.1$, hydralazine + HRP	835101
CH ₃ C ₆ H ₄ SO ₂ N'(Na ⁺)	W(8.5)	15.87	18.13	$A_{\rm N} = 2.38$, chloramine-T + UV light	85EV03
See 83CA	02 for a very useful kinetic	technique to di	stinguish betw	een free and "bound" 'OH, also 86BU0	I.
ЮН	W	15.0	15.0	radiolysis of water	76SA01
ЮН	W	15.0	15.0	[2.0062] H ₂ O ₂ + UV light	77LA01
ОН	W(P7.4)	15.0	15.0	[2.0062] microsomes + NADPH	77LA01
ЮН	W(P7.8)	not g	given	Fenton system	78BU01
OH	W(P7.8)	not g	;iven	xanthine + xanthine oxidase with DETAPAC	78BU02
он	W(P7.4)	14.90	14.90	microsomes or nuclei and nitroso- amines	78FL01
ОН	W(P7.4)	14.90	14.90	[2.0055] H ₂ O ₂ + UV light	78FL01
он	W(5.5)	14.9	14.9	[2.0061] chlorophyll a or Bchl + light	78HA01
ОН	W	14.77	14.77	ammonium persulfate	78JA02
он	. W	14.83	14.83	ADP-Fe(III)-H ₂ O ₂	78JA02

Table 1 (Continued). DMPO Spin Adduct Parameters

Adduct	Solvent	A _N /G	<i>A</i> 11/G	Other A's/G, [g-value], Source	Reference(s
· · · · ·					
'ОН 'ОН	W(P7.4) W(P7.4)	15.0 15.0	15.0 15.0	[2.0062] microsomes + NADPH [2.0062] NADPH-cytochrome c re- ductase	78LA01 78LA02
ОН	W(P7.4)	15.0	15.0	microsomes + NADPH	78LA02
OH	AcN	14.10	12.29	$[2.0060] O_2^{T} + H_2O_2$	780Z01
ОН	W(P7.8)	14.87	14.81	xanthine + xanthine oxidase	79F101
ОН	W(P7.8)/DMF 10:1	14.8	14.8	TMAS, $t_{1/2} = 2.5 h$	79F101
он	W(P11.5)	14.9	14.9	[2.006] 6-hydroxydopamine autoxi- dation	79FL01
OH OH	W(P)	not	given	stimulated neutrophils ZnD dispersion + light	79GR01
он	W(P7.2)	15.3	15.3	(±0.3 G), polymorphonuclear leuco-	79RO01
0H	W(6.0)	15.2	15.2	(2 0058) Ec(1), bleomycin	7951102
	W(D7 S)	15.2	15.2	$[2.0050]$ re(II)-bicomycin \pm light	80BU002
OH"	₩(P7.3) ₩(7)	not	given	5-methylphenazinium + light, not	80CH01, 80CH
пн	W(P7.4)	14.9	14.9	H.O. + light	80F101
0H	W	14.9	14.9	e inadiation	80KE01
0H	W(6)	15.00	15.00	H_{0} + $UV_{1} = 870 s$	80MA02
HC HC	W	not	eiven	neutrophiles + latex \log	800601
	W(PR 3)	14.9	14.9	henstic nuclei + NADPH	80PA01
NH NH	w (18.5)	15.0	15.0	Ir(III) Co(IV) Ti(IV) or KMpO	805(0)
אר ער	W	15.0	15:0	hematin \pm cumanehydroner(xida	805001
ייי או	Ŵ	15.0	15.0	Fe(11) citrate \pm H().	805001
	W/(6.0)	15.01	15.01	$\frac{12}{12} \frac{12}{12} 12$	8051101
	W(0.7) Manke	13.4	1.5.2		814001
	13811K5 13773		given	A amigubangolo acid d 11V [°] light	BICHOI
DH Contraction	₩(7) ₩(7–11)	14.90	14.90	(2.0057) H ₂ O ₂ + light or SO ₄ ⁷ ,	81KI01
)-	W (13.5)	16.2	16.2	(2.0057) H ₂ O ₂ + light; pH dependence of A's	81KI01
าห	W(P7)	15.0	15.0	reduced mitomycin C	81LO01
ЭН	W(P7.4)	14.95	14.95	respiring mitochondria	81NO01
рн	W	14.9	14.9	$H_{1}O_{1} + UV$ light	81RO01
)H	Ŵ	14.9	14.9	[2.0061] Fenton system	82BU01
DH'	W(P7.4)	14.9	14.9	H_2O_2 + UV or decomposition of DMPO-OOH	82F101
ЭН	W(7.4)	14.9	14.9	Fenton system, buffer and chelate	82FL01
ЮН	W	14.9	14.9	[2.006] Phanerochaete chrysos-	82FO01
ы	W(P7 A)	14.8	14.8	daunomycin + light	82GR01
н	₩(7)	14.7	14.7	gamma radiation of water, $t_{1/2} = 58$	82HE01
ม	W(7.0)	14.9	14.9	[2 0055] DOPA or catechol + UV '	82K A01
11)H"	W(7.0)	14.9	14.9	air oxidation of DMPO	821.103
и И	Ŵ	14.9	14.9	ultrasound in water	85R101 82MA
11 14	W(7 8)	not i	iven	Fe(III), FDTA + H.O.	82MA02
11 11	W(D7 A)	14.0	14 0	[2 (050)] sutoxidation of cysteine	825 401
ัก ป	W(TP7A)	14.9	14.9	Ea/II) + custaine	828501
חי 14	W(1K/.*) W(b7.9)	14.0	14.0	(2) (1056) Eenton sustem	8271501
E	W(P7.4)	14.9	14.9	[2.0050] red blood cells + adriamy-	83BA01
ห	W(P7 8)	not	viven	Fe(II)-nicolinate + H.O.	83BA03
H	W(P7.4)	15.0	15.0	Fe(II)-EDTA or Fe(II)-DETAPAC +	83BU01
oh" 4	> ₩	14.9	14.9	adriamycin or daunomycin + light, not 'OH	83CA01
н	W(P7.4)	14.9	14.9	[2.0050] reduced nucleotide and phenazines	83DA01
н	W(P7.0)	14.9	14.9	Furocoumarin derivatives + light	83DE01
)H"	W(RPMI)	15.02	15.02	human polymorphonuclear leuko- cytes	83DO02
H	W(CH7 0)	14.92	14.92	Fenton system	83FT 01
H	1-octanol	14.2	11.6	Fenton system in water then extrac- tion	83FL01

					Other A's/G, [g-value],	
	Adduct	Solvent	A _N /G	A _{II} /G	Source	Reference(s)
.OH		• W(CH6.7)	14.92	14.92	Fc(II)-ADP-H2O2	83FL02
.OH		W(CH6.7)	14.92	14.92	Fc(II)-ADP-H ₂ O ₂	83FL03
'OH		W(P7.2)	not	given	ozone + caffeic acid	83GR02
ЮН		W(KRP7.4)	14.8	14.8	stimulated peripheral blood neutro- philes	83HA01
.OH		W	14.9	14.9	ultrasound using clinical equipment	83MA05
'OH		W(P7.4)	14.7	14.7	xanthine oxidase with transferrin	83MO01
юн		W(HEPES7.6)	not	given	microsomes + adriamycin + NADH	83NO01
юн		W(P7.4)	14.9	14.9	[2.0051] primaquine + red cells or NADPH	83TH02
'OH		Oleic ucid	13.9	13.6	Fenton reaction	84BO01
HO		Methyl olcate	14.5	15.0	Fenton reaction	848001
OH		W(P7.0)	15.0	15.0	methylene blue + ascorbate + light	84BUUI 84DE01
UN .		W(7.0)	14.9	14.9	Chlopromazine + UV light	840EUI
'OH		W(TR7.6)	14.9 not	14.9 given	H_2O_1 + light, HPLC detection	84FL01
ЮН		W(P7.4)	not	given	xanthine oxidase, iron and mem-	84G101
'0H		W(P7 8)	14 95	14 95*	Fention system	84K A01
.OH		W/PrOH 1:1	14.7	13.1*	Fenton system	84K A01
'OH		W/Acetone 1:1	14.6	13.2*	Fentan system	84K A01
'OH		W/PrOH 1:2	14.5	12.65*	Fenton system	84KA01
'OH		W/Acctone 1:2	14.55	12.55*	Fenton system	84KA01
'OH		t-BuOH	14.6	12.0*	Fenton system	84KA01
юн		iso-Amyl alcohol	14.25	12.0*	Fenton system	84KA01
.OH		Ethyl acetate	13.75	10.95*	Fenton system	84KA01
'OH		Benzene	13.7	12.1*	Fenton system	84KA01
'OH		Toluene	13.75	12.1*	Fenton system	84KA01
'OH		W(P7.8)	15.00	15.00	[2.0055] H ₂ O ₂ + drug semiquinone	84KAG2
OH		W(P7.0)	14.9	14.9	photolysis of tartrazine	84ME01
'OH '		W	14.9	14.9	$A_{\rm H} = 0.227({\rm OH}), 0.224(6),$ 0.135(2), 0.229, 0.370; H ₂ O ₂ + UV, 90° out-of-phase detection	84MO04
'OD		D2O	14.9	14.9	$A_{\rm D} < 0.01, A_{\rm H} = 0.224(6),$ 0.135(2), 0.229, 0.370; H ₂ O ₂ + 11V 90° out of phase detection	84MO04
'OH		W(TR7 5)	14.9	14 9	adriamyrin-Fe(III) + H.O.	84MU01
'OH		W(HEPES7.4)	not	viven	ubisemiguinone radical reactions	84NO01
.OH		W	14.95	14.95	ultrasound	84RE09
"'ОН"		W(P7.4)	14.9	14.9	menadione + NADPH-cytochrome c reductase + NADPH + GSH and GSH-peroxidase; reduction of DMPD (OOH	84RO01
'OH		W(P7 5)	15.0	15.0	entrover and an of an incide	84TE01
.OH		W(P8.5)	14.9	13.0	[2.0051] DL-glyceraldehyde autoxi- dation	84TH02
ЮН		W(P7.4)	14.9	14.9	[2.0050] AcPhHZ + oxyhaemoglo- bin or red cells	84TH03
.OH		W(PP8.6)	14.9	14.9	[2.0051] glyceraldehyde autoxidation	84TH04
.OH		W(P6-8)	(14.9-	-15.2)	asbestos + H_2O_2	84WE01
'OH		W(P8.6)	not g	given	glyceraldehyde autoxidation	84WO01
.OH		W(P7.8)	14.8	14.8	xanthine + xanthine oxidase	84UE02
.OH		W(CH7.1)	14.92	14.92	ADP-Fe(II)-H ₂ O ₂	84ZS01
.OH		W(7.1)	14.9	14.9	[2.0055] photodecomposition of bleomycin	85AN01
.OH		W(P7.0)	15.0	15.0	Photofrin II + ascorbate + light	85BU02
"'OH"		W	14.9	14.9	<pre>{2.0061}, blue dye No. 1 + light, not 'OH</pre>	85CA01
.OH		W(P7)	14.9	14.9	photolysis of mitomycin C	85CA03
.OH		W(TR3.0)	14.9	14.9	Fenton system—not from ligninase	85K101
OH		W/AcN 3:5	14.86	14.86	cyclic peroxide decomposition	85MA03
.OH		W(P)	not g	jiven	Fenton system	85ME01
OH		W(P3.5)	14.8	14.8	$[2.006], H_2O_2$ -MNNG + light	85MI03
'OH		W(P6.5)	15.0	15.0	CPZ + UV light	85MO01
OH		W/DMSO 19:1	14.9	14.9	diaziquone + light	85MO02

•

Table 1 (Continued). DMPO Spin Adduct Parameters

		· .	4.10	Other A's/G, [g-value],	D C (
Adduct	Solvent	A _N /G	A _H /G	Source	Reference(s
юн	In cells	14.4	14.4	H_2O_2 + UV after DMPO is in cells	85MO03
.он [.]	W(TR7.8)	noi	given	$H_3O_2 + UV$, HPLC separation of products	85PR01
ЮН	W(P7.8)	14.9	14.9	[2.0050] xanthine + xanthine oxi-	85TH01
ЮН	W (7.0)	14.8	14.8	xanthine oxidase and ferritin	85TH03
'OH	W(PP8.5)	not	given	monosaccharide autoxidation	85TH04
ЮН	W(P7.4)	14.9	14.9	[2.0050] 1,4-naphthoquinone-2-sul- fonate oxidase	85TH05
.OH	W(P7.8)	14.9	14.9	[2.0050] xanthine oxidase	85TH06
ЮН	W(P7.4)	14.9	14.9	[2.0050] adriamycin + heart sarco-	85TH08
ЮН	W(P7.4)	14.9	14.9	PRQ + Trypanosoma cruzi + NADH	86AU01
.OH	w	15.0	15.0	Fe(II) with Desferal + H.O.	86BO01
.0H	Hanks	14.9	14.9	stimulated neutronbils	868802 86880
.0H	W(P7 ())	14.0	14.9	$CP7_{-}SO \text{ or } P7_{-}SO + \text{ light}$	86BU01
ЮН	W(P7.4)	14.9	14.9	Anthracycline + submitochondrial	86DO01
ЮН	W(P8.3)	14.9	14.9	Fenton system or peroxisomes +	86EL02
.OH	W(C9.0)	tiot (viven	melanin with hydrogen peroxide	861101
.OH	W(7)	14.9	14.9	LIV irradiation of Trn	861001
.OH 011	W(P7 8)	14.9	14.9	ultrasound	86MA01
ЮН	W(Swim's)	14.9	14.9	menadione + enterocytes, DMPO/	86MA02
OH	W(P7.8) + LPC	14.3	14.3	LPC or serum autoxidation	86MA01
OH	W(P7.4)	14.7	14.7	Fenton reaction	86MO01
ОН	W(P7.4)	15.01	15.01	xanthine + xanthine oxidase and Fe(II)	86MO03
POL OH	W(P7.4)	15.01	15.01	A(17.0) = 4.66, xanthine oxidase	86MO03
OH	W(Ac4.6)	14.8	14.8	indole-3-acetic acid $+$ HRP $+$ H.O.	86MQ04
OH	W(P7 0)	14.9	14.9	chlortettacycline + 11V light	860101
OH	W(P7 4)	15.0	15.0	anthranyrazole + light and NADH	868 FOI
OH	W(P7.4)	15.0	15.0	anthranyrazole + light and ascorbate	868 F02
OH	W and Cells	14.9	14.9	radiolytic generation	865A01
он	W'(P7.4)	14.9	14.9	[2.0050] NADH/NADH dehydro-	86TH02
ดห	W(P7 8)	14.0	14 9	ranthine \pm ranthing oridase	**8671101
01	W(7.0)	14.9	14.0	(2 006) Featon system	87MI01
	W(7.0)	14.7	ivan	ranthine + ranthing oriduse	875101
ОН	Ethyl acetate	13.60	10.87	reevaluation of 84KA01	871 R01
ООН	w	14.3	11.7	$A_{\rm H} = 1.25, [2.0061]$ chloroplasts +	75HA01
OOH	W	14.1	11.3	$A_{\rm H} = 1.25$, [2.0061] CdS dispersion	· 77HA01
ООН	W(P)	hot g	iven	riboflavin + light; $t_{1/2} = 35 - 80$ s	78BU01
· HOO	W(P7.8)	not g	iven	xanthine + xanthine oxidase with	78BU02
DOH	w	not a	iven	synthetic melanin 4 light	78FF01
DOH	Ŵ	14.1	11.3	CdS or phthalocyanine pigments +	78HA02
DOH	Ethylene glycol	13.6	10.9	CdS or phthalocyanine pigments +	78HA02
DOH	MeOH	13.3	10.4	CdS or phthalocyanine pigments +	78HA02
HOC	EtOH	13.1	10.3	CdS or phthalocyanine pigments +	78HA02
HOC	AcN	•13.0	10.3	CdS or phthalocyanine pigments +	78HA02
НОС	DMSO	12.7	10.3	CdS or phthalocyanine pigments +	78HA02
HOC	DMF	12.8	9.9	CdS or phthalocyanine pigments +	78HA02

Table 1 (Continued)	DMPO Spin Adduct	Parameters

٠

Add	luct	Solvent	A _N /G	A _H /G	Other A's/G, [g-value], Source	Reference(
OOH		Acetone	13.1	8.1	CdS or phthalocyanine pigments +	78HA02
оон /		Benzene	12.9	6.9	CdS or phthalocyanine pigments + light	78HA02
OOH		Heptane	12.9	6.8	CdS or phthalocyanine pigments + light	78HA02
D¹ <u>.</u>		AcN	14.20		[2.0058] electrochemical generation of O ₂ ⁻⁷	78 0Z 01
ООН		AcN	13.26	10.61	$A_{\rm H} = 1.25$, [2.0061] electrochemi- cal generation	78 0Z 01
OOH		W(TR7.5)	as in 7	74HA01	microsomes + aromatic nitrocom- pounds	78SE01
DOH		W(P7.0)	not	given	protoporphyrin IX + light	79 BU 01
DOH		different	not	given	porphyrins and light	79CO01
HOC		W(P7.8)/DMF 10:1	14.2	11:6	$A_{\rm H} = 1.2$, TMAS	79F101
DOH		W(P7.8)	14.3	11.7 •	$A_N = 1.25$, xonthine + xanthine oxidase	79FI01
JOH		W(P)	not	given	stimulated neutrophils	79GR01
ЮН		W(TR7.4)	14.3	11.7	$A_{\rm H} = 1.25$, microsomes + mitomy- cin C	80KA01
DOH		W	not	given	neutrophiles + latex IgG and PMA	800K01
DOH J	X	W(TR7.4)	14.3	11.7 	$A_{\rm H} = 1.25$, microsomes + ronida- zole	80PE02
JOH		W(P7.5)	not	given	chloroplasts and chloroplasts lipid vesicles	80UA01
DOH		W(P7.8)	14.3	11.7	$A_{\rm H} = 1.3$, FMN + NADPH, xan- thine + X.O., riboflavin	81GR01
JOH		W(P7.4)	14.25	11.3	$A_N = 1.4$, respiring mitochrondria	81N001
ЮН ЮН		W(P7.4) W(KRP7.4)	14.3 14.3	11.7	$A_{\rm H} = 1.25$, microsomes + NADPH $A_{\rm H} = 1.25$ [2.0061] NADPH oxi- dasa + NADPH ox NADPH	81R001 82BA01
) ХОН	,	W(P7.8)	not	given	xanthine oxidase with lactoferrin	82BA02
ЮН		W(P7.8)	14.2	11.2	$A_{\mu} = 1.3$ [2.0060] xanthine oxidase	82BU01
ЮН		W	not	given	xanthine oxidase; cacodylate buffer radical	82TH01
ЮН		W(P7.8)	not given		xanthine oxidase	83BA03
ЮН		W(P7.5)	14.3	11.7	$A_{\rm H} = 1.25$, [2.0061] NADPH/pyo- canine	83DA01
ЮН		W(TR7.4)	uot p	given	arsenazo III + inicrosomes	83DO01
ЮН		W(P7.4)	not	given	adriamycin + NADPH	83GU01
OH		• W(Hanks)	14.3	11.7	$A_{\rm H} = 1.25$, macrophages + PMA	83HU01
OH		W(Tricine8)	14.1	11.2	$A_{\rm H} = 1.3$, chloroplasts + light	83MC01
OH		W(HEPES7.4)	not g	given	adriamycin and mitochondria	83NO01
OH		Benzene	12.8	6.9	$A_{\rm H} = 1.7$, benoxaprofen + UV	83RE01
OH		EtOH	13.1	10.3	$A_{\rm H} = 1.4$, benoxaprofen + UV	83RE01
-		DMSO	12.9	10.2	$A_{\rm H} = 1.5$, benoxaprofen + UV	83RE01
он		W(P7.4)	14.3	11.7	$A_{\rm H} = 1.25$, [2.0061] primaquine + NADPH	83TH02
OH		W(MS7.8)	not g	riven	pea chloroplasts, dioxathiadiaza-2,5- pentalene	84BO03
он		W(P7.4)	14.3	11.35	$A_{\rm H} = 1.25$, gentian violet + NADH + light	84F101 .
он		W(P7.4)	not g	iven	nitrofurans + Trichomanas foetus	84MO02
он		W(P7.4)	not g	iven	nitrofurans + rat liver mitochondria	84MO03
OH		W(P7.4)	not g	iven	arsenazo III + motochondrial pro- tein	84MO07
OH		W(TR7.4)	14.3	11.7	$A_{\rm H} = 1.25$, adriamycin + mito- chondria + NADH	84PO01
OH		W(P7.4)	14.3	11.7	$A_{\rm H} = 1.25$, menadione + NADPH- cytochrome c reductase	84RO01
OH		W(P7.4)	14.3	11.7	$A_{\rm H} = 1.25$, microsomes + nitraze- pam	84R004
OH		W(TR7.4)	14.3	11.7	$A_{\rm H} = 1.2$, hepatic nuclei + adria- mycin	84 SI01

•

i

٠

Table 1 (Continued). DMPO Spin Adduct Parameters

Adduct	Solvent	A _N /G	A _H /G	Other A's/G, [g-value], Source	Reference(s)
юон	W(P7.5)	14.2	11.4	$A_{\rm R} = 1.3$, enzymatic reduction of autorids	84TE01
.OOH	W(TR7.5)	14.3	11.7	$A_{\rm H} = 1.25$, [2.0061] naphthols + microsomes	84TH05
'OOH	W/DMSO 19:1	14.2	11.6	$A_{\rm H} = 1.2$, KO ₂ in DMSO	84UE01
.OOH	W(P7.4)	14.2	11.6	$A_{\parallel} = 1.2$, xanthine + xanthine oxi- dase	84UE02
ЮОН	DMSO	12.7	10.3	$A_{\rm H} = 1.3$, Ga-phthalocyanine + light	85BE01
'00H 031	W(MS7.0) DMSO	not 12.7	given 10.3	pea chloroplasts + paraquat $A_{\mu} = 1.3$, photolysis of aminoqui- none drugs	85BO01 85CA03
, HOO.	W(P7.0)	4.1	11.3	$A_{\rm H} = 1.25$, photolysis of mitomy-	85CA03
HOO	W(P7.4)	not	given	dihydroxyfumarate, HRP + and - H ₂ O ₂	85F101
'OOH	W(Cit4.0)	14.2	11.3	$A_{\rm H} = 1.3$, CPZ + UV light	85MO01
ЮОН	W(TR7.8)	not	given	H ₂ O ₂ + UV, HPLC separation of products	85PR01
HOO	W(P7.8)	14.3	11.7	$A_{\rm H} = 1.25$; [2.0061] xanthine + xanthine oxidase	85TH01
OOH	W(7.0)	13.1	11.0	$A_{\rm H} = 1.3$, xanthine oxidase	85TH03
'OOH	W(P7.8)	14.3	11.7.	$A_{\rm H} = 1.25$ [2.0061] xanthine oxi- dase	85TH06
.OOH	W(Hanks)	14.3	11.7	$A_{\rm H} = 1.25$, stimulated neutrophils	86BR02, 86BR0;
'OOH	W(P8.0)/DMSO 1:1	12.7	10.3	$A_{\rm H} < 0.5$, potassium superoxide	86KO01
'OOH	W(P7.4)	not	given	dihydroxyfumarate + HRP (not with acetaminophen)	86MA03
'OOH	W(TR7.4)	not	given	microsomes with nitrobenzyl chlo- ride	86MO01
юон	W(TR7.4)	not j	given	p-nitrobenzyl chloride + micro- somes	86MO02
ЮОН	W(P7.4)	14.2	11.34	$A_{\rm H} = 1.25$ xanthine oxidase	86MO03
юон	W(Ac4.6)	14.4	11.3	$A_{H} = 1.3$, indole-3-acelic acid + HRP + H_2O_2	86MOU4
HOO' [O ^r]	W(P7.4)	14.2	11.34	$A_{\rm H} = 1.25, A(17-0) = 5.9, \text{ xan-}$ thine oxidase and ¹⁷ O ₂	86MO03
OOH	AcN-wet	not g	ziven	KO ₂ or ubisemiquinone radical reac- tions	86NO01
ЮОН	W(P7.4)	14.4	11.4	$A_{\rm H} = 1.3$, anthrapyrazole + NADH and light	86RE01
ЮОН	W(P7.4)	14.3	11.7	$A_{\rm H} = 1.2$, MPP ⁺ with NADH and cytochrome P450 reduction	86SI01
ООН	W(P7.4)	14.3	11.7	$A_{\rm H} = 1.25$, [2.0061] adriamycin + NADH dehydrogenase	86TH02
OOH	W(P7.8)	14.3	11.7	$A_{\rm H} = 1.25$, xanthine + X.O.	**86TU01
OOH	W/Act 1:1	14.3	11.7	$A_{\rm H} = 1.25$. chloroplasts + light	86YO01
CH,O' .	Benzene	13.58	7.61	$A_{\rm H} = 1.85$, CH ₃ OH + PbOAc ₄	73JA01
CH3CH3O.	Benzene	_ 13.22	6.96	$A_{\rm H} = 1.39$, EtOH + PbOAc ₄	73JA01
CH3CH2O.	EtOH	13.5	7.4	$A_{\rm H} = 1.7$, benoxaprofen + UV light	83RE01
1-Butoxyl	Benzene	13.61	6.83	$A_{\rm H} = 2.06, n-{\rm BuOH} + {\rm PbOAc_4}$	73JA01
ert-Butoxyl	Benzene	13.11	7.93	$A_{\rm H} = 1.97$, di-t-butylperoxalate	73JA01
ert-BuO'	Benzene	13.19	8.16	$A_{\rm H} = 1.82$, di-tert-butylperoxide	182HA01
ert-BuO	Di-f-BuOOH	13.01	0.03	$A_{\rm H} = 2.04$, di- <i>tert</i> -butylperoxide	T82NAUI
eri-Butoxyi	. JU allierent	.12.//~14.84	$A_{\mu} = 3.96$	$A_{\rm H} = 1.43 - 4.13$ $A_{\rm H} = 44.2, A_{\rm H} = -0.484A_{\rm H} - 8.21$	64AUI
ert-Butoxyl	W(P7.4)	14.8	16.0	[2.0045) erythrocytes + <i>i</i> -BuOOH	83TH01
ert-Butoxyl	Benzene	13.5	8.0	$A_{\rm H} = 2.2$, mainstream cigarette	85HA02
ert-Butoxyl	Toluene	13.08	7.44	$A_{\rm H} = 1.68$, photolysis of hydrope- roxide	86DA02
enzoyloxyl	Benzene	12.24	9.63	$A_{\rm H} = 0.87(2), (C_{\rm s}H_{\rm s}CO_{\rm s})_{\rm s}$	73JA01
lumene alkoxyl	Toluene	13.08	8.88	$A_{\rm H} = 1.68$, dicumyl peroxide pho- tolysis	86DA02

Table 1 (Continued). DMPO Spin Adduct Parameters

Adduct	Solvent	A /G	A (G	Other A's/G, [g-value],	Roferonce(c)
			- Allio		
LO' Oleic alkoxyl	Freon-11 Toluene	13.0 12.84	6.5 6.48	$A_{\rm H} \approx 1.6$, methyl linoleate + ozone $A_{\rm H} \approx 1.68$, peroxidized oleic	81PR03 86DA02
Linoleic alkoxyl	Toluenc	12.84	6.48	$ac_{1d} + UV$ $A_{H} = 1.68$, peroxidized linoleic	86DA02
Linolenie alkoxyl	Toluene	12.84	6.48	$a_{\rm H} = 1.68$, peroxidized linolenic	86DA02
Arachidonic alkoxyl	Toluene	12.85	6.48	$A_{\rm H} \approx 1.68$, peroxidized arachidonic	86DA02
Vitamin K semiouinone	FIOH/W 4-1(6)	14.5	14.5	actu + UV	82ES01
C ³ H ³ OO.	W(P7.5)	14.6	11.0	$A_{\rm H} \approx 1.25$, hematin + ethyl hydro- peroxide	83KA01
RCO'?	W(P7,4)	15.6	18.8	isoniazid + HRP	835101
tert-BuOO'	W(P7.4)	14.5	10.5	$A_{\rm H} = 1.5$, t-BuOOH + hacmin	83TH01
tert-BuOO'	Tolucne	12.72	9.36.	$A_{H} = 1.44$, <i>tert</i> -butylhydroperox- ide + UV	86DA02
(CH ₁) ₂ CHOO'	W(P7.4)	14.7	11.5	$A_{\mu} = 1.1$, iproniazid + HRP	85K101, 83S101
Dioxyl unidentified	W(TAR5.0)	14.5	11.5	$A_{\rm H} = 1.3$, DMHB + ligninase	85HA03
Cumenedioxyl	W(3.0)	14.5	10.75	$A_{\rm H} = 1.75$, cumene hydroperoxide- hematin	80RO01
Cumenedioxyl	Toluenc	13.92	11.20	cumene hydroperoxide + UV	56DA02
Oleyl dioxyl	Olcic acid	14.7	11.6	Fenton reaction	84BO02
Lipid dioxyl	Methyl oleate	12.62	10.25	$A_{\rm H} = 1.41$, Fenton reaction, Spectra of LOO' in methyl laurate and linoleate also shown	84BO02
Oleic dioxyl	Toluene	14.80	12.60	peroxidized oleic acid + UV light	86DA02
Linoleic dioxyl	Toluene	14.80	12.60	peroxidized linoleic acid + UV light	86DA02
Linolenic dioxyl	Tolucne	14.80	12.60	peroxidized linolenic acid + UV light	86DA02
Arachidonic dioxyl	Toluene	14.80	12.60	peroxidized arachidonic acid + UV light	86DA02
Vitamin K dioxyl	EtOH/W 4:1(6)	13.4	10.8	$A_{\rm H} \approx 1.3$, vitamin K ₁ quinol + ox- ygen	82ES01
CCI,00.	W	14.5	10	$A_{\rm H} = 1.3$, CCl ₄ + UV, water ex- traction	82RO02
	See 87DA02	for additional alke	oxyl and dioxy	i adducts of DMPO.	
F'	Benzene	10.83		$A_{\rm P} \approx 21.6(2), A_{\rm H} = 1.74(2), {\rm di}$	73JA01
	•			fluoro DMPO; AgF ₂	
	Benzene	19.67		$A_{\rm C} = 3.57(2)$, from chlorine	/3JA01
Thiyi fadical	W(HEPES/.4)	15.2	10.4	ieri-Buuon + milochondria	BOKEUI
	W(7.4)	12.33	18.00	photolysis of disulfide	87DA01
	₩(7.4) ₩(7.4)	15.33	17.07	photolysis of disulfide $A \sim 0.53(2)$, 2 metaantoethanol $+$	87DA01
	W(7.4)	15.20	10.00	$A_{\rm H} \simeq 0.55(2)$, 2-mercapicemanor 4 H ₂ O ₂ and UV	870 401
	W(7.4)	15.30	17.07	and UV A = 0.54(2) - 2 measurements	07DAUI
	W(7.4)	15.20	17.07	$A_{\rm H} = 0.54(2), 2$ -mercapioeinyi- amine + H_2O_2 UV	87DAU1
	W(7.4)	15.32	17.12	photolysis of disulfide	87DAUI
2-Mercaptopropionylglycine-S	₩(7.4) ₩(7.4)	15.20	17.28	photolysis of disulfide 2-mercaptopropionylglycine $+$ H ₂ O ₂ and UV	87DA01 87DA01
Dithiothreitol-S	W(7,4)	15.07	16.53	photolysis of disulfide	87DA01
6.8-Dithiooctanoic acid-S'	W(7.4)	15.40	16.13	photolysis of disulfide	87DA01
Cysteinyl	W(P7.4)	15.3	17.2	[2.0047], autoxidation of cysteine	82SA01
Cysteinyl	W(P7.8)	15.3	17.25	hematoporphyrin + cysteine + light	84BU02
Cysteinyl	W(P7.4)	15.45	17.2	geniian violet + cysteine + light	84F101
Cysteinyl	W(P7.5)	15.3	17.0	cysteine + HRP/H_2O_2	84HA02
Cysteinyl	W	15.6, 15.2	17.7, 16.7	Decomposition of thiol nitrite	841001
Cysteinyl	W(P8.0)	15.2	17.0	acetominophen + HRP/H ₂ O ₂ or PGS	84R002
Cysteinyl	W(P8.0)	15.2	17.0	HRP + p -phenetidine + cysteine	85RO04
Cysteinyl	W(P7.0)	15.3	17.25	CPZ-SO or PZ-SO + cysteine + , UV light	86BU01
Cysteinyl	W(7.4)	15.12	17.44	photolysis of cystine	87DA01
Homocysteinyl	W(7.4)	15.28	16.80	photolysis of homocystine	87DA01

9

٠

.

Table 1 (Continued). DMPO Spin Adduct Parameters

•	•	·		Other A's/G, [g-value],	
Adduct	Solvent	A _N /G	A _H /G [`]	Source	Reference(
V-Acetyl cysteinyl	CH.CN	13.7	14.3	decomposition of the thiol nitrite	841001
V-Acetyl cysteinyl	W(P8.0)	15.0	16,8	acetaminophen + HRF/H ₂ O ₂ or PGS	84RO02
V-Acetyl cysteinyl	W(P8 .0)	15.0	16,8	HRP + phenetidine + N-acetyl cysteine	85RO04
DS'	W/McOH 3:1	14.9	15.4	decomposition of the thiolnitrite	84JO01
38'	W(P8.0)	15.0	16.3	acetaminophen + HRP/H ₂ O ₂ or PGS	84RO02
is.	W(HEPES7.8)	not	given	PHS + AA with GSH	85BO02
3S'	W(HEPES7.8)	14.9	15.4	RSV microsomes, aminopyrine, GSH	85EL01
JS'	. ₩	15.0	16.3	acetaminophen or p-phenetidine + HRP and GSH	85RO02
iS'	W(P7.0)	not	given	xanthine + X.O. + GSH	85RO03
iS'	W(P8.0)	15.0	16.3	HKP + phenetidine + GSH	85RO04
is.	W(P7.0)	15.3	16.2	CPZ-SO or PZ-SO + GSH + UV light	86BU01
iS'	W(TR7.8)	15.4	16.2	prostaglandin H synthetase + GSH	86EL01
iS'	W(TR8.3)	15.4	.16.2	RSV + GSH + AA	86EL01
iS"	W(TR7.4)	15.4	16.2	$HRP + H_2O_2 + GSH$	86HA02
iS'	W(P7.6)	15.4	16.2	styrene + HRP + GSH + H_2O_2	865101
iS'	W(7.4)	15.83	16.24	$\Lambda_{\rm H} = 0.60(2)$, glutathione disulphide + UV	87DA01
	Benzene	13.6	14.3	$t_{1/2} = 3.3$ s, photolysis of the disul- fide	841701
·CH ₃ OC ₄ H ₄ S [*]	Benzene	13.3	14.5	$t_{1/2} = 1.7$ s, photolysis of the disulfide	841101
	Benzene	13.4	11.0	$A_{\rm H} = 0.8(2)$, decomposition of thionitrite	841001
	Benzene	. 13.8	14.2	$A_{\rm H} = 0.7(2)(2.0001)$ thionitrite de- composition	841001
,n,),cs	Benzene	13.5	11.2	decomposition of thionitrite	* 84JOUL
LH3)2CHS hCH2S	Benzene	13.4	11.2	decomposition of thionitate $A_{\rm H} = 1.14(2)$, decomposition of thionitate	84JO01 84JO01
h.CS'	Rentene	12.05	13.8	[2 0067] decomposition of thionitrite	841001
nje5 0.7	W(7)	14.7	15,8	sulfite + UV light	8101
0, ⁻	W	14.55	16,16	[2.0055] sulfite + light, $t_{1/2} = 1.2$	81KI01
0.7	W/R7 Q)	14.7	16.0	sulfite + HPP or microsomes	82MO01
0,7 0,7	W(P7.8)	14.4	15.9	illuminated chloroplasts with hisul-	850001
) -		14.6	16.1		850001
J ₃ .	W(B7.8)	14.5	10,1	HRP + disultile	850001
U) [†]	W(8.5)	14.63	10.50	chioramine-T or sulfite + light	85EV03
Ū, [†]	W(P7.4)	14.7	16.0	bisulfite autoxidation	86RE03
D₄ [∓]	W	13.82	10.10	$A_{\rm H} = 1.42, 0.83; [2.0059]$ $S_2 O_6^{2^-} + \text{light } t_{1/2} = 21\text{s}$	81 KI 01
	The following are repo	rted to be various	oxidation or d	egradation products of DMPO.	
AsO ₂ DMPO degraded	W	. 14.44		$A_{A_1} = 7.49$, $SO_4^+ + ASO_2^-$, DMPO ring broken	84REUI
-centered	W(P/.4)	not	given	nyaroiysis of DMHO colored im- purity	
UMPU-yi	W(P7.4)	10.5	22.4	to DMPO	53KAUI
MPOX MPOX	different W(P7.4)	6.27–6.87 7.1	3.18-3.65 4.2(2)	solvent dependency shown [2.0065] cumenehydroperoxide +	77FL01
	··· · · · · · · · · · · · · · · · · ·			hematin	nat
mpox Mpox	W and MeOH W	not j ~7	given ~4	solvent dependence shown Ir(III), Ce(IV), KMnO4, Ti(IV) or	80RO01 80SC01
	11/200	7 .	4 1/05	nematin	entitos
MIUA	W(P/)	1.2	4.1(2)	(2.0040) superoxo-cooali complex	62MUI
	W(P/4)	1.2	4.1(2)	rerr-duvvri + nacmin	63 I MUI CO
MPOX	W(7 4)	7 1	A 2/22	nomhunia abatassasitizati	94140001
MPOX MPOX MPOY	W(7.6)	7.1	4,2(2)	porphyrin photosensitization	84M001

æ

	Table 1 ((Continued).	DMPO 3	Spin-Adduct	Parameters
--	-----------	--------------	--------	-------------	------------

Adduct	Solvent	A _N /G	A _H /G	Other A's/G, [g-value], Source	Reference(s)
DMPOX	DMSO	7.0	3.5(2)	Fc-phthalocyanine + light	85BE01
DMPOX	W(5)	7.1	4.2(2)	chloramine-T or permanganate	85EV02
DMPOX	W(TR3.0)	7.1	4.2(2)	lignin model + ligninase	86HA01
2,2'-dimer	W(P7.4)	14.2	15.9	[2.0054] oxyhacmoglobin + hydra- zinc	84TH03
2,2'-dimer	W	14.18	15.86	[2.0054] chemical synthesis of dimer	84TH03
DMPO-degradation	W(P)	15.31	22.0	xanthine oxidase + xanthine, ap- pears late	79F101
Unidentified oxidation	w	14.05	13.35	DMPO + Fe(III) additional products observed	80SC01
$N(OH)C(CH_3)_2CH_2CH_2$ C(=0)OH	₩(7)	14.3	. 16.2	$A_{\rm N} = 4.2$, [2.0053] oxidation by Co-O ₂ ⁷	82HI01
Nitroso product	CH ₂ Cl ₂	15.50		trioxolane + DMPO	81PR02

•In Reference 84KA01 the values of A_N and A_H were inadvertently interchanged (J. Trudell and R. Mason, private communication, 1987. See also 87TR01). ••The hyperfine splittings for the 'OH and 'OOH adducts of 5-butyl-5-methyl-1-pyrroline 1-oxide, 5,5-dipropyl-1-pyrroline 1-oxide and 2-aza-2-cyclopentenespirocyclopentane 2-oxide are given in 86TU01. See also 86CA01 for an example of the use of the dipropyl analogue of DMPO. †Terr-butoxyl spin adducts of alkyl substituted variations of DMPO are also presented in 82HA01.

.

•

• •

.

Table 2. PBN Spin Adduct Parameters								
Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)			
н.	Benzene	14.25	7.13	p-nitroperbenzoic acid and amine	69JA01 /			
Н.	Benzene	14.22	7.11.	photolysis of n-Bu ₁ SnH	69JA01			
Н.	W	16.8	10.9(2)	radiolysis of water	76SA01			
H.	W	16.7	10.6(2)	[2.0056] electrolysis of water	78KA01			
e ⁻ + H [•]	W(P7.0)	16.2	10.5(2)	NaBH, reduction of PBN	78LO01			
Н.	Toluene	14.99	7.49	[2.0053] an alkylcobaloxime + light	78MA01			
e ⁻ + H ⁺ (reduction)	W	16.2	10.5(2)	sodium borohydride reduction, air oxida- tion	81LO01			
H.	W	16.4	10.2(2)	TiO + light with NaHCO,	82AU01			
н.	W/EtOH 3:1	16.5	9.2(2)	chlorohemin + light	83MA02			
Н.	W(8.5)	15.50	8.75(2)	chloramine-T + light	85EV03			
H.	W	16.57	10.50(2)	gamma radiolysis of water	86LA01			
D.	Toluene	14.66	7.44	$A_{\rm p} = 1.25$, [2.0070] alkycobaloximes + light	78MA01			
·CH,	Benzene	14.20	3.45	photolysis of dimethylmercury	69JA01, 68JA01			
CH,	Benzene	14.15	3.41	organolithium and oxygen	68JA01			
'CH,	Benzene	14.24	3.45	$CH_3HgCl + light$	69JA01			
'CH,	Tolucne	14.91	3.66	[2.0061] alkylcobaloximes + light	78MA01			
Ethyl	Benzene	13.89-14.00	3.13-3.20	photolysis of organo-Pb, -Sn or -Hg	69JA01			
Ethyl	W(C10.0)	16.2	3.4	Cu-catalyzed oxidation of ethyl hydrazine	81AU01			
Ethyl	W(P7.5)	16.3	3.2	microsomes + ethyl hydrazine	81AU01			
Ethyl	Benzene	14.3	3.3	Cu-catalyzed oxidation of ethylhydrazine	81AU01			
Ethyl	Benzenc	14.4	3.2	mictosomes + ethylhydrazine	81AU01			
CH(CH ₃) ₂	Toluene	14.66	2.58	alkylcobaloximes + light	78MA01			
$CD(CD_1)_2$	Toluene	14.66	2.58	alkylcobaloximes + light	78MA01			
n-Butyl	Benzene	13.73- 4.15	2.08-3.13	photolysis of organo-Pb, -Sn or -Hg	69JA01			
n-Butyl	AcN	14.88	3.05	electrolysis of TBABBu,	79BAQ1			
n-Butyl	Benzene	14.6	3.4	tributy!tin chromate + UV	81RE01			
n-Butyl	CH ₂ Cl ₂	14.6	3.3	tributyitin chromate + UV	81RE01			
Cyclohexyl	Cyclohexane	14.5	2.2	gamma radiolysis of cyclohexane	77 IW 01			
CH ₂ (CN)	Toluene	14.41	3.58	[2.0065] alkylcobaloximes + light	78MA01			
CH ₂ (CN)	AcN	14.43	2.10	diazonium salt + ultrasound	84RE07			
'CH2OH	McOH	15.31	3.73	1-butyl-O-O-1-butyl + UV	73LE01			
·CH ⁵ OH	MeOH and W	15.36	3.76	peroxydisulfate + UV	73LE01			
.CH'OH	MeOH	15.41	3.73	$H_2O_2 + UV$	73LE01			
.CH'OH	W/McOH 2:1	15.79	3.78	r-butyl-O-O-r-butyl	73LE01			
'CH ₂ OH	McOH	15.3	3.75	gamma-irradiated MeOH	74MA01			
·CH2OH	MeOH	15.6	3.7	gamma-irradiated MeOH	75ZU01			
·CH3OH	W(TR7.4)	!6.00	3.74	[2.0056] liver microsomes + NADPH + ErOH	77SA01			
CH₂OH	W(P)/McOH 9:1	16.07	3.86	[2.0056] McOH(10%) + 1% H ₂ O ₂ + UV light	77 5A01			

Table 2 (Continued). PBN Spin Adduct Parameters

CHOH of TRIS	MeOH				
CHOH of TRIS		14.14	2.06	$MeOH + H_2O_2 + UV light$	77SA01
CHOI 0 IKIS	W(TR7.4)/McOH 19:1	16.2	3.60	$H_2O_2 + MeOH + UV$ light in TRIS	77SA01
.CH ³ OH	McOH	15.3	3.8	Fc(III) + light in McOH	79RE01
.CH ³ OH	McOH	15.40	3.77	photolysis of cobalt azido complex	79RE02
°CH₂OH	W	16.1	3.75	TiO + light with McOH	82AU01
'CH ₂ OH	Tolucne	15.0	6.6	[2.0058] Dry toluenc, BP* + McOH	82KO02
'CH ₂ OH	McOH	15.1	3.6	[2.0058] BP*	82KO02
.CH ⁵ OH	McOH/Toluene	va	ries	variation of A ₁₁ shown versus [MeOH]	82KO02
'CH ₂ OH	McOH	15.25	3.75	decay of tritiated McOH	84HA01
'CH ₂ CH ₂ OH	Toluene	14.66	3.58	(2.0070) alkylcobaloximes + light	78MA01
CH C'HOH	EtOH	15.36	3.62	1-butyl-O-O-1-butyl	73LE01
CH ¹ C.HOH	W(TR7.4)	16.10	3.35	[2.0056] liver microsomes + NADPH + EIOH	77SA01
CH'C.HOH	W(P)/EtOH 2:1	15.94	3.34	$H_{1}O_{1} + EtOH + UV light$	77SA01
CH'C.HOH	EIOH	15.4	3.6	Fe(III) + light in EtOH	79RE01
CH.C.HOH	W(P7.4)	16.2	3 34	H.O. + UV with EtOH	82F101
CH.C.HOH	W(P7 8)	16.1	3 3	(2.0057) F(0H + Fe(11)	82TE01
CH C'HOH		15.5	3.5	chlorohomin + light	83MA02
		15.5	3.7	Lives missesemes A NADDU A menored	776 401
Provi radical	W(1K/.4)	10.10	3.23	Nor microsomes + NADPH + propanoi	775401
Profit radical	W/MUH I:I	14.9	2.90	$H_2O_2 + propanol + UV light$	775401
PTUM radical	PTOH	14.9	2.90	$H_2 U_2 + U V Ignt$	//SAUI
CH(OH)C ₂ H ₃	n-PTOH	15.3	3.0	Fe(III) + light in <i>n</i> -propanol	/9KEUI
(CH ₃) ₂ C [*] OH	2-PTOH	15.48	3.60	peroxydisulfate	73LE01
(CH ₃) ₂ C'OH	W(P7.8)	16.1	3.6	[2.0056] iso-PTOH + Fe(II)	82TE01
(CH ₃) ₂ C [*] CN	THF	14.6	3.07	[2.0044] α , α' -azobisisobutronitrile	671W01, 701W01
(CH ₁) ₂ C [*] CN	Xylene	13.4	3.7	dimethyl α , α' -azobisisobutyrate + heat	671W01, 701W01
$(CH_3)_2C^*CN?$	Benzene	13.87	2.09*	azobisisobutyronitrile	77 0H 01
(CH ₃) ₂ C [*] CN	Benzene	14.05	3.10	azobisisobutyronitrile	82BE01
(CH))2C'CN	Benzene	14.29	3.28 i	E. G. Janzen, personal communication, 1987	
iso-Propyl radical	CHCi,	14.9	2.49	hepatocytes + isopropylhydrazine	85AL01
iso-Propyl radical	CHCI,	15.0	2.49	metal-oxidation of isopropylhydrazine	85AL01
'CH(OH)C,H,	n-BuOH	15.1	3.5	Fe(III) + light in n-BuOH	79RE01
CH ₁ C'(OH)C ₂ H ₁	sec-BuOH	14.9	3.3	Fe(III) + light in sec-BuOH	79RE01
tert-BuOH radical	W(P)/t-BuOH 1:1	14.1	2.31	$H_1O_1 + tert$ -butanol + UV light	77SA01
tert-BuOH radical	t-BuOH	14.1	1.8	H ₁ O ₁ + UV light	77SA01
tert-BuOH radical	W(TR7.4)	16.03	3.62	liver microsomes + NADPH +	77SA01
CH'CH'CH'C.HOH	n-BuOH/W 5:1	15.46	3.61	neroxydisulfate	73LE01
n-BuOH radical	W(TR7.4)	16.03	3.44	liver microsomes + NADPH +	77SA01
TRIS radical	W(TR7 4)	16.00	. 3.75	microsomes + TRIS	775A01
Acetone radical	W(TR7 A)	15.00	3 74	liver microsomes + NADPH + acetone	775401
Acetonittile tadical	W(TP7 A)	16.02	3.89	liver microsomes + NADPH + acetone	775401
DMSO ''A''	W(TR7.4)	16.46	3.60	[2.0056] liver microsomes + NADPH +	77SA01
DMSO "B"	W(TR7.4)	15.10	3.42	[2.0058] liver microsomes + NADPH +	77 SA 01
DMSO radical		14.8	2 83	12 00561 H.O. + 11V light	775401
DMSO mileal	W(TP7 A)/DMSO 10-1	16.0	2.05	$H \cap \rightarrow H V$ lists	775 401
DMSO radical	DMSO	12.0	3.77	$1_2O_2 = 0$ v agat	775 401
DMNA radical	W(TR7.4)	15.56	5.75	[2.0050] H ₂ O ₂ + OV fight [2.0057] liver microsomes + NADPH +	77SA01
MNA maion		15 69	5 66	$12 \text{ (0)} 571 \text{ (i)} \text{ (i)} \pm 1132 \text{ (i)} \text{ (i)}$	776 401
DENA radical	W(TR7.4)	15.56	4.70	[2.0057] H ₂ O ₂ + OV light [2.0057] liver microsomes + NADPH +	77SA01
JENA radical	W(P)/DENA 9-1	15 68	4 50	DENA (2.0)57) SLO. \pm 11V light	775401
And adjoint	τη (ε.): μαρώτητα (γ.) Ο ΜΦ	1.4 0	7.50	atomation of 2 MD	10001 820001
neys sawices :	2-WE W(CAO O)	14.0	J.U A &	Ch openinged oridation of acculturation'	BIATIOI
nuty: Acetyl		10.0	7.0		81 A 1101
Acetyl	W(F/.J)	10.0	J.7 1 2	nucrosomes - accivinyutazine	01AUUI 81 A1101
NUCLYI A antri	Denzene	14.4	2.3	Cu-caunyzed oxidation of acetyinydrazine	
ICETYI	Denzene	14.0	2.2	microsomes + acetyl nydrazine	OLAUUI
ICETY!		14.2	3.4	ozone + aimethylacetylene, -30°C	62PKUI
ICETY!?	C/M 2:1	14.4	3.12	nepatocytes + isoniazid, 213 K	831002
icetyl?	CHCi	14.3	2.47	hepatocytes + acetylhydrazine	85AL01
locty 7	CHCI,	14.4	2.53	metal-oxidation of acetylhydrazine	85AL01
yclohexadienyl	Benzene	14.4	2.0	cigarette smoke	85CH03, 84PR01
yclohexadienyl	Benzene	14.2	2.1	NO/isoprene/air	85CH03, 84PR01

1

Table 2 (Contin	ued).	PBN	Spin	Adduct	Parameters
-----------------	-------	-----	------	--------	------------

Alky indical Alky indical Benzame [4,4] 3.2 (c)parties struke and b PR (on glass) SCCM0. SPR00 SCM0. SPR00 (c)parties struke and b PR (on glass) SCCM0. SPR00 SCM0. SPR00 (c)parties struke and b PR (on glass) SCCM0. SPR00 SCM0. SPR00 SCM0. SPR00 (c)parties struke and b PR (on glass) SCCM0. SPR00 SCM0. SPR00 SCM0. SPR00 SCM0. SPR00 SCM0. SPR00 SCM0. SPR00 (c)parties struke and b PR (on glass) SCCM0. SPR00 SCM0. SPR00 SCM	Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
Aley indical Aley indical SDS aley1 ndical Benzane Cl, SDS aley1 ndical 13.3 12.2 cigarete stroke stroke SDS alley1 ndical stroke SDS alley1 ndical SDS alley1 ndical SDS alley1 ndical SDS alley1 ndical SDS alley2 ndical SDS alley2 ndical SDS alley2 ndical SDS alley2 ndical SDS alley2 ndical SDS alley2 ndical	Alkyl radical	Benzene	14.4	32	cigarette smoke on solid PBN (on glass)	85CH03, 84PR01
Aley indical CC, i4 5 3.3 cignate stroke Link of Max Mark M4001 SDS skyl ndical Micelie 15.7 2.9 naphboging photograduations photocyclic aniso acids 850K01 CN AcN 15.04 1.98 ccll(y) + nonsulthydry innino acids 803A02 CN Benzene 14.96 1.94 Cll(y, CR), CH2, OBFO 801A02 CN AcN 15.04 1.96 ccll(y) + nonsulthydry innino acids 803A02 CN AcN 15.02 2.03 All SG = 9.85, Slettrochemical 841A02 CN AcN 15.02 2.03 All SG = 9.85, Slettrochemical 841A02 CONK W 15.33 3.20 All SG = 9.85, Slettrochemical 841A02 CONK AcN 15.04 10.01 All SG = 9.85, Slettrochemical 842A01 CONK AcN 15.04 10.01 All SG = 9.85, Slettrochemical 842A01 CONK AcN 15.33 3.20 All SG = 9.85, Slettrochemical 842A01 <	Alkyl radical	Benzene	14.3	3.2	cigarette smoke on solid PBN (on silica)	85CH03, 84PR01
SDS slight material Matche 13.7 2.9 and the state of the	Alkyl rudical	CCL	14.5	33	cigamite smoke	SAPRO1
$ \begin{array}{c} 2.05 \ model reduces a model of the second $	SDS alkyl endical	Micalla	15 7	2.5	nephthominane photometrion-SDS min	850101
$ \begin{array}{c} \operatorname{nume}_{\mathcal{C}} \operatorname{ach} (\operatorname{releasily} (W(R), 0) & 16.3, & 5.0, & Cc(1V) + \operatorname{nonsullity}(Y) = \operatorname{nume} \operatorname{std}(Y) \\ \mathcal{C} N & \operatorname{Benzene} & 14.96, & 1.34, & Cd, Cd, CN, CH, (CH, CN, -D, DEPO & B03, 02 \\ \mathcal{C} N & \operatorname{AeN} & 15.04, & 1.39, & Cd, Cd, CN, -D, DEPO & B03, 02 \\ \mathcal{C} N & \operatorname{AeN} & 15.04, & 1.39, & Cd, CN, -D, DEPO & B03, 02 \\ \mathcal{C} N & \operatorname{AeN} & 15.02, & 2.03, & A(N, -D, U), P, 05, S, electrochemical & SH2, 00 \\ \mathcal{C} N & \operatorname{AeN} & 15.02, & 2.03, & A(N, -D, U), P, 05, S, electrochemical & SH2, 02 \\ \mathcal{C} N & \operatorname{AeN} & 15.02, & 2.03, & A(N, -D, U), P, 05, S, electrochemical & SH2, 03 \\ \mathcal{C} N & A, N & 15.03, & 3.20, & A_{\mathcal{C}} & -0.5, A_{\mathcal{A}} = 0.5, Hg(CN), + UV & SH2, 01 \\ \mathcal{C} N & A, N & 15.53, & 3.20, & A_{\mathcal{A}} = 1.05, Hg(CN), + UV & SH2, 01 \\ \mathcal{C} O, NH, & W & 15.53, & 4.6, & A_{\mathcal{A}} = 1.04, Hg(CN), & SH2, 03 \\ \mathcal{C} O_{\mathcal{C}} & W(KHB7.6), & 15.8, & 4.6, & A(13.C) = 10.01, & SH2, 03 \\ \mathcal{C} O_{\mathcal{C}} & W(KHB7.6), & 15.8, & 4.6, & A(13.C) = 10.17, perime V & SEC, 001 \\ \mathcal{C} O_{\mathcal{C}} & W(KHB7.6), & 15.8, & 4.6, & A(13.C) = 11.7, perimed liver & SEC, 001 \\ \mathcal{C} O_{\mathcal{C}} & W(KHB7.6), & 15.8, & 4.6, & A(13.C) = 11.7, perimed liver & SEC, 001 \\ \mathcal{C} C_{\mathcal{C}} & W(R17.7), & 14.1, 11.8, & (12.005), (2.01, perc.1) + Hore & TRPOOI \\ \operatorname{Terrowers} & 13.30, & 1.54, & A_{\mathcal{A}} = 1.34, (THauromethyl iodde & 601A, 01 \\ \mathcal{C} C_{\mathcal{C}} & C(H, 21, & 10.0, 1.14, & 1.8, & convents or hepmosytes & SET, 001 \\ \operatorname{Terrowers} & Panolysis of F4C(0), & p-2.3, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ \operatorname{Terrowers} & A_{\mathcal{A}} = 0.796A, p.6, (A(3.C) = 0.23, CCL, & SOPOOI \\ Ter$	SDS alkyl fedical	wheele	15.7	6.7	celles	050401
CN AcN 13.04 1.99 Iteractivitation (A, Sectoretime) 80.002 CN AcN 13.04 13.96 CH/CAN, CH3, CAN, CH3, CH3, CH3, CH3, CH3, CH3, CH3, CH3	amino acid radicals	W(M7.0)	16.3	5.0	Cc(IV) + nonsulfhydryl amino acids	83GR01
CN Benzene 13.96 1.94 C,H,C,H,C,N,C,H,J,C,M=O,DBPO 800,007 [°C] 'CN AcN 15.04 1.98 electrochemical adjation of CN ⁻ or 82.WA02 [°C] 'CN AcN 15.02 2.03 A(13-C) = 9.85, electrochemical 8840.03 [°C] 'CN AcN 15.03 13.80 I/N + UV 9.85, electrochemical 8840.03 [°C] 'CONH, W 15.53 3.2 I/N + UV 0.54, I/S (CN), WSEDD 885ED1 [°CONH, W 15.5 3.2 I/N + UV 10.94, HigtCN), BSEDD 885ED1 [°CO, 'W 15.8 4.6 TO + High with formate 82AU01 90.0407, W(KHB7.6) 15.8 4.6 A(13-C) = 11.7, Freinsel iver 88CO01 "CO, 'W W(R7.5) 14.1 1.8 12.00, Ci, BECCL, HIVE 13.00 1.54 A, = 1.54, uffloornethyl iodide 68IA01 CCI, CL, CL, 'IA 1.3 regiven CC, given in vio. liver extract 79CA01 CCG, CCL, 'IA 1.4 1.75 hopiacytes + CC, redia, set and 175K <t< td=""><td>'CN</td><td>ΛcN</td><td>15.04</td><td>1.98</td><td>tetraethylammoniumCN, electrochemical</td><td>80JA02</td></t<>	'CN	ΛcN	15.04	1.98	tetraethylammoniumCN, electrochemical	80JA02
CN AcN 15.04 1.98 electrochemical colstation of CN ⁻ or EWA02 ["C] ['C] CN AcN 15.02 203 A(13-C) = 9.5; blectrochemical 84/A02 [CNH, AcN 15.03 139 ICN + UV 85R03 87R03 [CONH, W 15.53 3.20 $A_n = 0.5; Hg(CN)_n + UV 85R03 [CONH, W 15.53 3.21 A_n = 0.3; Hg(CN)_n + UV 85R03 [CO, W 15.8 4.6 print on the top the to$	'CN	Benzene	14.96	1.94	C ₆ H ₃ CH ₂ CN, (CH ₃) ₃ CN≕O, DBPO	80JA02
	'CN	AcN	15.04	1.98	electrochemical oxidation of CN ⁻ or SCN ⁻	82WA02 ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	["C'] 'CN	AcN	15.02	2.03	A(13-C) = 9.85, clectrochemical	84JA02
	CN	AcN	15.05	1.98	1CN + UV	85RE03
	'CONH.	W	15.53	3.20	$A_{\rm H} = 0.5, A_{\rm H} = 0.5; {\rm Hg}({\rm CN})_{\rm h} + {\rm UV}$	85RE01
Toront The second	["C] CONH	Ŵ	15.53	3.2	$A_{\rm N} = 0.5, A(13-C) = 10.49, Hg(CN)_{\rm N}$	85RE01
				t	+ UV	
$\begin{array}{cccc} CO_7 & W & 15.9 & 4.6 \\ CO_7 & W(KHB7.6) & 15.8 & 4.6 \\ PCO_7 & W(KHB7.6) & 15.8 & 4.6 \\ PCO_7 & W(KHB7.6) & 15.8 & 4.6 \\ PCO_7 & W(KHB7.6) & 15.8 & 4.6 \\ A(13.C) = 11.7; perfused liver & 96COOI \\ PCO_7 & W & 15.8 & 4.6 \\ A(13.C) = 11.7; frames ystem + & 96COOI \\ PCO_7 & W(KHB7.6) & 15.8 & 4.6 \\ A(13.C) = 11.7; frames ystem + & 96COOI \\ PCO_7 & W(KHB7.6) & 14.1 & 1.8 \\ (2055) CCL or DFCL, + liver & 78PCOI \\ microsomes & DFCL, + liver & 78PCOI \\ microsomes & DFCL, + liver & 78PCOI \\ PCCL & C/M 2:1 & 14.10 & 1.74 & A1.3 \\ PCCL & C/M 2:1 & 14.10 & 1.74 & A1.5C & 9.58, A0.5CL & 10.22 \\ PCCL & C/M 2:1 & 14.10 & 1.74 & A1.5C & 9.58, A0.5CL & 10.22 \\ PCCL & C/M 2:1 & 14.10 & 1.74 & A1.5C & 9.58, A0.5CL & 10.22 \\ PCCL & C/M 2:1 & 14. & 1.8 \\ PCCL & C/M 2:1 & 14. & 1.8 \\ PCCL & C/M 2:1 & 14. & 1.75 & A1.5C & 9.7, hepatocytes + CCL & 85CHOI, 82AL0I \\ PCCL & C/M 2:1 & 14. & 1.75 & A1.5C & 9.7, hepatocytes + CCL & 85CHOI, 82AL0I \\ PCCL & C/M 2:1 & 14. & 1.75 & A1.5C & 9.7, hepatocytes + CCL & 82AL0I \\ PCCL & C/M 2:1 & 14.0 & 1.77 & A1.5C & 9.7, in vio CCL (ret) & 82AL0I \\ PCCL & C/CL & 13.5 & 1.5 & A1.5C & CCL & 82AU0, 82AL0I \\ PCCL & C/CL & 13.5 & 1.5 & A1.5C & CCL & 82AU0, 82AL0I \\ PCCL & C/CL & 13.5 & 1.5 & A1.5C & CCL & 82AU0, 82AL0I \\ PCCL & C/CL & CCL & 13.5 & 1.5 & A1.3C & CCL & CBCL & 82AU0 \\ PCCL & C/CL & 13.5 & 1.5 & A1.3C & CCL & CBCL & 82AU0 \\ PCCL & C/L & 13.5 & 1.5 & A1.3C & CCL & CBCL & 82AU0 \\ PCCL & C/L & 13.5 & 1.5 & A1.3C & CCL & CBCL & 82AU0 \\ PCCL & C/M 2:1 & 14.45 & 1.85 & privositis of CBCL & 85AU0 \\ PCCL & C/M 2:1 & 14.45 & 1.85 & Privositis of CBCL & 85AU0 \\ PCCL & C/M 2:1 & 14.45 & 1.85 & Privositis of CBCL & 85AU0 \\ PCCL & C/M 2:1 & 14.45 & 1.85 & Privositis of CBCL & 85AU0 \\ PCCL & C/M 2:1 & 14.45 & 1.85 & Privositis of CBCL & 85AU0 \\ PCCL & C/M 2:1 & 14.45 & 1.85 & Privositis of CBCL & 85AU0 \\ PCCL & C/M 2:1 & 14.65 & 2.37 & hepatocytes + CCL & 85AU0 \\ PCCL & C/M 2:1 & 14.65 & 2.37 & hepatocytes + CHCL & 85AU0 \\ PCCL & C/M 2:1 & 14.65 & 2.37 & hepatocytes + CHCL & 85AU0 \\ PCCL & C/M 2$	'CONH ₂	AcN/W 6:1	14.85	0.82	$A_{\rm N} = 1.70, A(13-{\rm C}) = 10.01;$	85RE03
$ \begin{array}{ccccc} CG_1^{\circ} & W(KHB7.6) & 15.5 & 4.6 & refrued liver & max & 85C001 \\ PCO_1^{\circ} & W(KHB7.6) & 15.8 & 4.6 & A(13-C) = 11.7; pertuad liver & 85C001 \\ PCO_1^{\circ} & W & 15.8 & 4.6 & A(13-C) = 11.7; pertuad liver & 85C001 \\ PCO_1^{\circ} & W & 15.8 & 4.6 & A(13-C) = 11.7; pertuad liver & 85C001 \\ PCO_1^{\circ} & W & 15.8 & 4.6 & A(13-C) = 1.7; pertuad liver & 85C001 \\ PCO_1^{\circ} & W & 15.8 & 4.6 & A(13-C) = 1.7; pertuad liver & 85C001 \\ PCO_1^{\circ} & W & 15.8 & 4.6 & A(13-C) = 1.7; pertuad liver & 78R001 \\ PCO_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 13.4 & 1.3 & Photolysis of Fe(CO_1, & 1900) \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 13.4 & 1.3 & Photolysis of Fe(CO_1, & 1900) \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.1 & 1.8 & Photolysis of Fe(CO_1, & 1900) \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.1 & 1.8 & Photolysis of Fe(CO_1, & 1900) \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.4 & 1.8 & Photolysis of Fe(CO_1, & 1900) \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.4 & 1.75 & A(13-C) = 9.7, hoptocytes + CC_1^{\circ} & 85CH01, 82AL01 \\ PCC_1^{\circ} & CC_1^{\circ} & 14.4 & 1.75 & A(13-C) = 9.7, hoptocytes + CC_1^{\circ} & 85CH01, 82AL01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.4 & 1.75 & A(13-C) = 9.7, hoptocytes + CC_1^{\circ} & 85CH01, 82AL01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 11.75 - 3.77 & Photolysis of CC_1^{\circ} or CBC_1^{\circ} & 82AH01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 11.44.5 & 1.5 & A(13-C) = 9.2, hoptocytes + CC_1^{\circ} & 82AH01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 11.75 & A(13-C) = 9.2, hoptocytes + CC_1^{\circ} & 82AH01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 11.44.5 & 1.55 & Potolysis of CC_1^{\circ} & 0.23(3), micro- & 84MC01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 11.44.5 & 1.85 & Potolysis of CC_1^{\circ} & 82AH01 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.45 & 1.85 & Potolysis of CC_1^{\circ} & 85AH02 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 11.44.5 & 1.85 & Potolysis of CC_1^{\circ} & 85AH02 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.45 & 1.35 & Potolysis of CC_1^{\circ} & 85AH02 \\ PCC_1^{\circ} & CC_1^{\circ} & CC_1^{\circ} & 14.45 & 1.35 & Potolysis of CC_1^{\circ} & 85AH02 \\ PCC_1^{\circ} & CC_1^{\circ$	CO.T	w	15.9	4.6	TiO + light with formate	82AU01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C0.7	WIKHBT 6	15.8	4.6	nerfused liver	860001
$\begin{array}{ccccc} & W & 15.8 & 16. & A(13.C) = 11.7; France system + 86CC001 \\ formute, pX, = 2.85 \\ CF, & Benzene & 13.30 & 1.54 & A, = 1.54, filthrownethyl iolide & 68JA01 \\ CCI, & W(TR7.5) & 14.1 & 1.8 & (2.0059) CCI, or B(CC), + 1iver & 78PO01 \\ CCI, & CCI, & CI, & 13.4 & 1.3 \\ CCI, & CCI, & CI, & 13.4 & 1.3 \\ CCI, & CCI, & CI, & 13.4 & 1.3 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CCI, & CI, & 14.1 & 1.8 \\ CCI, & CI, & 14.1 & 1.8 \\ CCI, & CI, & 14.1 & 1.8 \\ CCI, & CICI, & 14.1 & 1.75 \\ CCI, & CICI, & 14.2 \\ CCI, & CICI, & 13.5 \\ CCI, & CICI, & CICI, & 82AL01 \\ CCI, & CICI, & 14.0 & 1.75 \\ CCI, & CICI, & 82AC01 \\ CCI, & CICI, & CICI, & 82AL01 \\ CCI, & CICI, & CICI, & 82AL02 \\ CCI, & CICI, & CICI, & 82AL02 \\ CC$	¹⁰ CO.7	W(KHB7 6)	15.8	4.6	A(13.C) = 11.7; confined liver	860001
Ccj H Lob $H(12)$ <td></td> <td>W</td> <td>15.8</td> <td>4.6</td> <td>A(13,C) = 11.7; Fenton system +</td> <td>860001</td>		W	15.8	4.6	A(13,C) = 11.7; Fenton system +	860001
CF, CCI, Benzene 13.30 1.54 $A_{-} = 1.54$, influorimethyl iodide 68IA01 CCI, \dot{K} CI, 14.1 1.8 [2.0059] CCL, or BCCL, Hiver 78PO01 CCI, \dot{K} CI, 13.4 1.3 photolysis of Fe(CD), microsomes 79CA01 "CCI, C/M 2:1 not given CCL, given in vivo, liver extract 79LA01 "CCI, C/M 2:1 14.1 1.8 c.7, septembolisis of Fe(CD), in vivo 0.23, CCL, 800701 800701 "CCL, C/M 2:1 14. 1.8 c.7, in reliability, sample around 175K 807001 "CCL, C/H, 14. 1.75 Angle consorts or hepatocytes & S07001 82AL01 "CCL, C/H, 14. 1.75 A(13-C) = 9.7, in vice CL, (rat), 82AL01 82AL01 "CCL, C/H, 14. 1.75 A(13-C) = 9.7, in vice CL, (rat), 82AL01 82AL01 "CCL, C/H, 13.5 1.5 A(13-C) = 9.7, in vice CL, or CBrCL, 82AL01 82AL01 "CCL, W(TR.5) microsomes + CL, or CBrCL, 82AL01 82AL01 <td< td=""><td></td><td>**</td><td>15.5</td><td>4.0</td><td>formate. $pK_{\star} \approx 2.85$</td><td>000001</td></td<>		**	15.5	4.0	formate. $pK_{\star} \approx 2.85$	000001
CCl, W(TR7.5) 14.1 1.8 [2.0393] CCL, or BCCL, + liver TBPO01 CCL, ÉCL, 13.4 1.3 photolysis of FE(CD), + liver TBPO01 CCL, ÉCL, 13.4 1.3 photolysis of FE(CD), + liver TBPO01 CCL, C/M 2:1 14.10 1.74 (13.4) 1.3 photolysis of FE(CD), + liver TSPO01 "CCL, C/M 2:1 14.10 1.74 (13.4) 1.3 photolysis of FE(CD), + liver TSPO01 "CCL, C/M 2:1 14.1 1.74 (13.4) 1.75 K07001 "CCL, C/M 2:1 14.1 1.75 hepatocytes + CC1, + BSCH01, 82AL01 82CH01, 82AL01 "CCL, CHC, 14.1 1.75 ni vivo Cli (rat) 82CH01, 82AL01 "CCL, CHC, 14.1 1.75 ni vivo Cli (rat) 82L01, 82AL01 "CCL, CHC, 14.1 1.75 microsomes + CC1, or CBCL, 82AL01 82A01 "CCL, CHC, 13.5 1.75.3 fivo CC1, or OBCL, 82AL01 82A01 "CCL, CCL, CL, 13.5 1	CF.	Renzene	13 30	1.54	$A_{\rm u} = 1.54$ trifluotomethyl iodide	681401
CC1, SC1001 SC2101 SC10	·CCI.	W(TR7 S)	14 1	18 4	12 00591 CCL or BrCCL + liver	78PO01
CCl, Ccl, Cl, 13.4 1.3 photolysis of Fe(CO), 79CA01 CCl, C/M 2:1 not given CCl, given in vivo. (Cl, given in vivo. (Ver extract) 79LA01 °CCl, C/M 2:1 14.10 1.74 (13.C) = 0.23, CCl, given in vivo. (Ver extract) 79LA01 °CCl, CCl, CCl, 14. 1.8 CCl, + microsomes on tepatocytes 80P001 °CCl, CHCl, 14. 1.75 A(13.C) = 9.7, htypatocytes + CCl, 85CH01, 82AL01 80P001 °CCl, CHCl, 14. 1.75 A(13.C) = 9.7, in vivo CCl, (rat), 82AL01 82AL01 °CCl, CHCl, 14. 1.75 A(13.C) = 9.7, in vivo CCl, (rat), 82AL01 82AL01 °CCl, CHCl, 14. 1.75 for CCl, 08Cl, 82AL01 82AL01 °CCl, W(TR.7.5) not given microsomes + CCl, or CBCl, 82AL01 82A01 °CCl, W(TR.7.5) not given microsomes + CCl, or CBCl, 82AL02 82A01 °CCl, CCl, CCl, C.M 2:1 14.0 1.75 hepatocytes + CL, or CBCl, 82AL02 82A01 °CCl, CCl, CCl, C.M 2:1	CCI	5 (IR7.5)		1.0	microsomes	/01/001
Cci, C/M 2:1 not given CCl, graphic function Tot function "CCl, C/M 2:1 14.10 1.74 A(13-C) = 9.68, A(25-C) = 0.23, CCl, graphic function S0P001 "CCl, CCl, 14. 1.8 e ⁻¹ irradiation, sample around 175K S0T001 "CCl, C/M 2:1 14. 1.8 e ⁻¹ irradiation, sample around 175K S0T001 "CCl, CHCl, 14. 1.75 A(13-C) = 9.7, heptocytes + CCl, graphic strest S0T001 "CCl, CHCl, 14. 1.75 A(13-C) = 9.7, inviso CL, (att) S2AL01 "CCl, CHCl, 14. 1.75 In vivo CL, (att) S2AL01 "CCl, CHCl, 14. 1.75 A(13-C) = 9.7, inviso CL, (att) S2A01 "CCl, CHCl, 14. 1.75 A(13-C) = 9.4, gamma irradiation of s2SY01 S2A01 "CCl, CCl, 13.5 1.5 A(13-C) = 9.2, A_{cc} = 0.23(3), micro-set ACL, s2A01 "CCl, C/M 2:1 14.45 1.85 perfused liver and CCl, set ACL, set ACL as as ALD AS A	·CC1.	fre	13.4	13	nhotolysis of Fe(CO).	790 401
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·CCI.	C/M 2+1	10,4	iven	CC1 gives in vivo lives extract	701 401
CCi, Cirk 1.14 1.14 (1) Cirk (2) Cirk </td <td></td> <td>C/M 2-1</td> <td>14 10</td> <td>1 74</td> <td>A(13.C) = 0.68 $A(13.C) = 0.23$ CC</td> <td>809001</td>		C/M 2-1	14 10	1 74	A(13.C) = 0.68 $A(13.C) = 0.23$ CC	809001
$\begin{array}{cccl} CCl_{1} & CCl_{4} & 14, 1.8 & e^{-irradiation, sample around 175K} & 80T001 \\ CCl_{5} & C/M 2:1 & 14, 1.8 & (Cl_{4} + microsones or hepatocytes solution) \\ CCl_{5} & C/HCl_{5} & 14, 1.75 & hepatocytes + CCl_{4} & 85CH01, 82AL01 \\ P^{*}CCl_{5} & CHCl_{5} & 14, 1.75 & A(13-C) = 9.7, hepatocytes + CCl_{4} & 82AL01 \\ P^{*}CCl_{5} & CHCl_{5} & 14, 1.77 & 177 $	CCIj	C/M 2.1		1.74	in vivo	001001
$\begin{array}{ccccl} CCl_{1} & C/M 2:1 & 14 & 1.8 & CCl_{1} + microsomes or hepatocytes & 80TOO1 \\ CCl_{1} & CHCl_{1} & 14 & 1.75 & hepatocytes + CCl_{1} & 85CHO1, 82AL01 \\ CCl_{1} & CHCl_{1} & 14 & 1.75 & h(13-C) = 9.7, hepatocytes + CCl_{1} & 82AL01 \\ CCl_{1} & CHCl_{1} & 14 & 1.75 & h(13-C) = 9.7, in vivo CCl_{1} (rat) & 82AL01 \\ CCl_{1} & CHCl_{1} & 14 & 1.75 & h(13-C) = 9.7, in vivo CCl_{1} (rat) & 82AL01 \\ CCl_{1} & W(TR7.5) & 1.77-3.57 & photolysis of CCl_{1} or CBrCl_{1} & 82AL01 \\ CCl_{1} & W(TR7.5) & not given & microsomes + CCl_{2} or CBrCl_{1} & 82AL01 \\ CCl_{1} & W(TR7.5) & not given & microsomes + CCl_{4} agmma irradiation of & 82SY01 \\ CCl_{1} & CCl_{1} & CCl_{1} & 13.5 & 1.5 & A(13-C) = 9.20, perfused liver and for CCl_{1} & 82AL02 \\ CCl_{1} & CCl_{2} & CCl_{2} & 13.5 & 1.5 & A(13-C) = 9.20, perfused liver and & 86CO01 \\ CCl_{2} & C/M 2:1 & 14.45 & 1.85 & perfused liver and CCl_{4} & 86CO01 \\ ^{10}CCl_{2} & C/M 2:1 & 14.45 & 1.85 & perfused liver and CCl_{4} & 86DA01 \\ CCl_{2} & CCl_{2} & CCl_{2} & 13.60 & 1.56 & photolysis of CBrCl_{3} & 86DA01 \\ CCl_{2} & CCl_{2} & CCl_{2} & 14.46 & 1.55 & A(13-C) = 9.20, perfused liver and & 86CO01 \\ ^{10}CCl_{3} & CCl_{4} & 14.67 & 2.37 & hepatocytes + CCl_{4} & 86DA01 \\ CCl_{3} & CCl_{4} & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCl_{4} & CCl_{4} & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCHCl_{3} & C'M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCHCl_{4} & C'M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCHCl_{5} & C'M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCHCl_{5} & C'M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCHCl_{5} & C'M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CCHCl_{5} & C'M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ CHCl_{5} & C'M 2:1 & 14.67 & 2.38 & hoptocytes + CHCl_{5} & 85AL02 \\ CHCl_{5} & C'M 2:1 & 14.67 & 2.38 & hoptocytes + CHCl_{5} & 85AL02 \\ CHCl_{5} & C'M 2:1 & 14.67 & 2.38 & hoptocytes + CHCl_{5} & 85AL02 \\ CHCl_{5} & C'M 2:1 & 14.67 & 2.38 & hopto$	·CCl,	CCL	14.	1.8	e ⁻ irradiation, sample around 175K	80 TO 01
$\begin{array}{cccc} CCl_{1} & CHCl_{2} & 14. 1.75 & hepatocytes + CCl_{4} & 85CHO1, 82ALO1 \\ {}^{10}CCl_{3} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, hepatocytes + CCl_{4} & 85CHO1, 82ALO1 \\ {}^{10}CCl_{3} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, hepatocytes + CCl_{4} & 82ALO1 \\ {}^{10}CCl_{3} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, in vivo CCl_{4} (rat), & 82ALO1 \\ {}^{10}CCl_{3} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, in vivo CCl_{4} (rat), & 82ALO1 \\ {}^{10}CCl_{3} & CCl_{4} & 0.796A_{4} = 9.40 & microsomes + CCl_{4} or CBrCl_{3} & 82AO1 \\ {}^{10}CCl_{3} & CCl_{4} & 13.5 & 1.5 & A(13-C) = 9.4, gamma irradiation of & 82SYO1 \\ {}^{10}CCl_{3} & CCl_{4} & 13.9 & 1.5 & A(13-C) = 9.4, gamma irradiation of & 82SYO1 \\ {}^{10}CCl_{3} & CCl_{4} & 13.9 & 1.5 & A(13-C) = 9.5, A_{C1} = 0.23(3), micro- & 84MCO1 \\ {}^{10}CCl_{3} & C/M 2:1 & 14.45 & 1.85 & perfused liver and CCl_{4} & 85ALO2 \\ {}^{10}CCl_{5} & C/M 2:1 & 14.45 & 1.85 & perfused liver and CCl_{4} & 86CO01 \\ {}^{10}CCl_{5} & C/M 2:1 & 14.45 & 1.85 & photolysis of CBrCl_{5} & 86DA01 \\ {}^{10}CCl_{5} & C/M 2:1 & 14.45 & 1.85 & photolysis of CBrCl_{5} & 86DA01 \\ {}^{10}CCl_{5} & C/H 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85ALO2 \\ {}^{10}CCl_{5} & C/H 2:1 & 14.67 & 2.37 & hepatocytes - CHCl_{5} & 85AL02 \\ {}^{10}CCl_{5} & C/H 2:1 & 14.67 & 2.37 & hepatocytes - CHCl_{5} & 85AL02 \\ {}^{10}CCl_{5} & C/H 2:1 & 14.70 & 2.37 & hepatocytes - CHCl_{5} & 85AL02 \\ {}^{10}CHCl_{5} & C/M 2:1 & 14.67 & 2.37 & hepatocytes - CHCl_{5} & 85AO1 \\ {}^{10}CCl_{5} & C/H 2:1 & 14.70 & 2.37 & hepatocytes (acoxic)^{10} & 85BO1 \\ {}^{10}CHCl_{5} & C/H 2:1 & 14.67 & 2.37 & hepatocytes (acoxic)^{10} & 85BO1 \\ {}^{10}CHCl_{5} & C/H 2:1 & 14.67 & 2.38 & hepatocytes (acoxic)^{10} & 85BO1 \\ {}^{10}CHCl_{5} & C/H 2:1 & 14.67 & 2.38 & hepatocytes (acoxic)^{10} & 85BO1 \\ {}^{10}CHCl_{5} & C/H 2:1 & 14.67 & 2.38 & hepatocytes + CHSl_{5} & 85DO1 \\ {}^{10}CHCl_{5} & C/H 2:1 & 14.87 & 2.38 & hepatocytes + CHSl_{5} & 85DO1 \\ {}^{10}CHCl_{5} & C/H 2:1 & 14.87 & 2.38 & hepatocytes + CHSl_{5} & 85DO1 \\ {}^{10}CHCl_$	'CCl	C/M 2:1	14.	1.8	CCL + microsomes or hepatocytes	80TO01
$\begin{array}{ccccc} CCl_{1} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, hepatocytes + CCl_{4} & 85CH01, 82AL01 \\ CCl_{3} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, in vivo CCl_{4} (rat) & 82AL01 \\ CCl_{3} & CHCl_{3} & 14. 1.75 & A(13-C) = 9.7, in vivo CCl_{4} (rat) & 82AL01 \\ CCl_{3} & 30 different & 14.06-15.73 & 1.77-3.57 \\ A_{H} = 0.796A_{H} = 9.40 \\ CCl_{3} & CCl_{4} & W(TR7.5) & not given & microsomes + CCl_{4} or CBrCl_{3} & 821A01 \\ CCl_{3} & CCl_{4} & 0.796A_{H} = 9.40 \\ CCl_{3} & CCl_{4} & 0.796A_{H} = 9.40 \\ CCl_{5} & CCl_{5} & CCl_{4} & 0.796A_{H} = 9.40 \\ CCl_{5} & CCl_{5} & CCl_{4} & 0.796A_{H} = 9.20 \\ CCl_{5} & CCl_{5} & CCl_{4} & 0.796A_{H} = 9.20 \\ CCl_{5} & CCl_{5} & CCl_{4} & 0.756A_{H} = 0.23(3), micro- \\ S0mes + CCl_{4} & 0.796A_{H} = 9.40 \\ CCl_{5} & CCl_{5} & CCl_{5} & 0.60 \\ CCl_{5} & CCl_{5} & CCl_{5} & 0.60 \\ CCl_{5} & 0.60 \\ CCl_{5} & CCl_{5} & 0.60 \\ CCl_{5} & CCl_{5} & 0.60 \\ CCl_{5} & 0.60 \\ CCl_{5} & 0.60 \\ CCl_{5}$	'CCI	CHCI	14.	1.75	hepatocytes + CCl.	85CH01, 82AL01
CCl, CHCl, 14. 1.75 in vivo CCl, (rat), Device to the second sec	¹⁰ CCl.	CHCI	14.	1.75	A(13-C) = 9.7, hepatocytes + CCL	85CH01, 82AL01
	'CCL	CHC).	14	1.75	in vivo CCl. (rat)	82AL01
CCl, 30 different 14.06-15.73 1.77-3.57 Introduct (ab), 321A01 'CCl, W(TR7.5) not given microsomes + CCl, or CBrCl, 821A01 ''CCl, CCl, CCl, attraction of given microsomes + CCl, or CBrCl, 821A01 ''CCl, W(TR7.5) 13.5 1.5 A(13-C) = 9.4, gamma irradiation of 82SY01 ''CCl, C/M 2:1 14.0 1.75 hepatocytes + CCl, 84MC01 ''CCl, C/M 2:1 14.45 1.85 perfused liver and CCl, 86C001 ''CCl, C/M 2:1 14.45 1.85 A(13-C) = 9.20; perfused liver and CCl, 86DA01 ''CCl, C/M 2:1 14.45 1.86 photolysis of CBrCl, 86DA01 ''CCl, C/L, 14.0 1.5 *ray radiolysis of CBrCl, 86DA01 ''CCl, C/L, 14.0 1.5 *ray radiolysis of CBrCl, 86DA01 ''CCl, C/L, 14.07 2.37 hepatocytes + CHCl, 85AL02 ''CCl, C/L, 14.07 2.37 hepatocytes + CHCl, 85AL02 ''CCl,	^D CCI.	CHCI.	14	1.75	A(13-C) = 9.7 in vivo CCL (rat)	82A1.01
CC1, P ¹ CC1, CC1, CC1, W(TR7.5) CC1, W(P7.4) Intervent (Total sector) Protoclass (Total sector) B21A01 (Tot CC1, CC1, CC1, CC1, B21A01 (Tot CC1, CC1, CC1, B21A01 (Tot CC1, CC1, CC1, B21A01 (Tot CC1, CC1, CC1, B21A01 (Tot CC1, CC1, CC1, B21A01 (Tot CC1, CC1, CC1, B21A01 (Tot CC1, CC1, B21A01 (T	·CCI.	30 different	14 06-15 73	1 77-3 57	nhotalysis of CCL or CBrCl.	821401
CCl, W(TR7.5) not given microsomes + CCl, or CBrCl, 82MC01 ¹⁰ CCl, CCL, 13.5 1.5 $A(13-C) = 9.4$, gamma irradiation of 82SY01 ¹⁰ CCl, W(P7.4) 13.9 1.5 $A(13-C) = 9.4$, gamma irradiation of 82SY01 ¹⁰ CCl, C/M 2:1 14.0 1.75 hepatocytes + CL, 85AL02 ¹⁰ CCl, C/M 2:1 14.45 1.85 perfused liver and CCL, 86C001 ¹⁰ CCl, C/M 2:1 14.45 1.85 perfused liver and CCL, 86C001 ¹⁰ CCl, C/M 2:1 14.45 1.85 perfused liver and CCL, 86DA01 ¹⁰ CCl, C/M 2:1 14.67 2.37 hepatocytes + CH, 86DA01 ¹⁰ CCl, C/L, 14.0 1.5 x-ray radiolysis of CBrCl, 86DA01 ¹⁰ CCl, C/L, 14.0 1.5 x-ray radiolysis of CBrCl, 85AL02 ¹⁰ CCl, C/L, 14.07 2.37 hepatocytes + CHCl, 85AL02 ¹⁰ CCl, C/M 2:1 14.67 2.37 hepatocytes + CHCl, 85AL02 ¹⁰ CHCl,			$A_{\rm H} = 0.79$	6A-9.40	for 'CCl.	82JA01
	.CCl ²	W(TR7.5)	not e	iven	microsomes + CCl. or CBrCl.	82MC01
$\begin{array}{cccc} CCl_{3} & W(P7.4) & 13.9 & 1.5 & A(13-C) = 9.5, A_{C} = 0.23(3), micro-status to the status to the statu$	¹⁾ CCI ₁	CCL	13.5	1.5	A(13-C) = 9.4, gamma irradiation of	825Y01
I ¹² CCl ₁ W(P7.4) 13.9 1.5 $A(13-C) = 9.5, A_{C1} = 0.23(3), micro-somes + CCL_somes + CCL_s$,			•	CCl.	
$\begin{array}{c cccl_{1} & Ccl_{1} & C/M 2:1 & 14.4 & 1.75 & hepatocytes + Ccl_{4} & 85AL02 \\ \hline CcCl_{5} & C/M 2:1 & 14.45 & 1.85 & perfused liver and Ccl_{6} & 86CO01 \\ \hline PCCl_{7} & C/M 2:1 & 14.45 & 1.85 & A(13-C) = 9.20; perfused liver and & 86CO01 \\ \hline PCCl_{7} & C/M 2:1 & 14.45 & 1.85 & A(13-C) = 9.20; perfused liver and & 86DA01 \\ \hline Ccl_{7} & Toluene & 13.60 & 1.86 & photolysis of CBrCl_{5} & 86DA01 \\ \hline Ccl_{5} & W(7) & 15.54 & 2.66 & photolysis of CBrCl_{5} & 86DA01 \\ \hline Ccl_{7} & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ \hline CHCl_{7} & C/M 2:1 & 14.667 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ \hline CHCl_{7} & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AL02 \\ \hline CHCl_{5} & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{5} & 85AD01 \\ \hline DCHCl_{5} & C/M 2:1 & 14.67 & 2.37 & chlorolysis of alpha-phenylbenzoin & 85BA01 \\ \hline DCHCl_{5} & C/M 2:1 & 14.67 & 2.37 & chlorolysis of CHCl_{5} & 85TO01 \\ \hline CHCl_{7} & C/M 2:1 & 14.67 & 2.37 & chlorolysis of CHCl_{5} & 85TO01 \\ \hline CHCl_{7} & C/M 2:1 & 14.67 & 2.37 & chlorolysis of CHBrCl_{5} or CHCl_{5} & 85TO01 \\ \hline CHCl_{7} & C/M 2:1 & 14.70 & 2.37 & deuterated chloroform + hepatocytes & 85TO01 \\ \hline CHCl_{7} & C/M 2:1 & 14.77 & 2.38 & bromodichloromethane + hepatocytes & 85TO01 \\ \hline (anoxic) & (anoxic) & (anoxic) \\ \hline CHr_{7} & Toluene & 13.60 & 1.84 & photolysis of CHBrCl_{5} & 85TO01 \\ \hline (anoxic) & (CH_{7} & C/M 2:1 & 14.87 & 2.38 & bromodichloromethane + hepatocytes & 85TO01 \\ \hline CHSr_{5} & W(7) & 15.44 & 2.64 & photolysis of CBr_{4} & 85DA01 \\ \hline CHSr_{5} & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes (anoxic) & 85TO01 \\ \hline CH_{7} & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 85TO01 \\ \hline CHSr_{5} & W(7) & 15.44 & 2.64 & photolysis of CBr_{4} & 85DA01 \\ \hline CHSr_{5} & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes (anoxic) & 85TO01 \\ \hline CH_{7} & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes (anoxic) & 85TO01 \\ \hline CH_{7} & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes (anoxic) & 85TO01 \\ \hline CH_{7} & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes (anoxic)$	¹³ .CCl ³	W(P7.4)	13.9	1.5	$A(13-C) = 9.5, A_{C1} = 0.23(3),$ micro-	84MC01
CCl, C/M 2:1 14.0 1.75 hepatocytes + CL, 85AL02 'CCl, C/M 2:1 14.45 1.85 perfused liver and CL, 86C001 ''CCl, C/M 2:1 14.45 1.85 A(13-C) = 9.20; perfused liver and 86C001 ''CCl, C/M 2:1 14.45 1.85 A(13-C) = 9.20; perfused liver and 86C001 ''CCl, Toluene 13.60 1.86 photolysis of CBrCl, 86DA01 'CCl, W(7) 15.54 2.66 photolysis of CBrCl, 86DA01 'CCl, CCl, 14.0 1.5 x-ray radiolysis of CCl, 87HA01 'CCl, C/M 2:1 14.67 2.37 hepatocytes + CHCl, 85AL02 'CHCl, C/M 2:1 14.67 2.37 hepatocytes (anoxic) ¹ 85A01 ''CHCl, C/M 2:1 14.70 2.37 A(13-C) = 9.26, ''CHCl, + liver 85T001 'CHCl, C/M 2:1 14.67 2.37 chloroform + hepatocytes (anoxic) ¹ 85T001 'CHCl, C/M 2:1 14.67 2.37 deuterate chloroform + hepatocytes 85T001 <td< td=""><td></td><td></td><td></td><td></td><td>somes + CCL₄</td><td></td></td<>					somes + CCL ₄	
$\begin{array}{ccccl} CCl_{1} & C/M 2:1 & 14.45 & 1.85 & perfused liver and CCl_{4} & 86C001 \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	·CCl,	C/M 2:1	14.0	1.75	hepatocytes + CCl ₄	85AL02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	·CCl,	C/M 2:1	14.45	1.85	perfused liver and CCL	86CO01
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	¹⁾ ·CCl ₃	C/M 2:1	14.45	1.85	A(13-C) = 9.20; perfused liver and	86CO01
$\begin{array}{cccccl} CCl_1 & Toluene & 13.60 & 1.86 & photolysis of CBrCl_1 & 86DA01 \\ CCl_3 & W(7) & 15.54 & 2.66 & photolysis of CBrCl_3 & 86DA01 \\ CCl_4 & CCl_4 & 14.0 & 1.5 & x-ray radiolysis of CCl_4 & 87HA01 \\ CHCl_2 & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHBrCl_5 & 85AL02 \\ CHCl_2 & C/M 2:1 & 14.66 & 2.37 & hepatocytes + CHBrCl_2 & 85AL02 \\ CHCl_2 & C/M 2:1 & 14.66 & 2.37 & hepatocytes + CHBrCl_7 & 85BA01 \\ D^*CHCl_2 & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHBrCl_7 & 85BA01 \\ D^*CHCl_2 & C/M 2:1 & 14.70 & 2.37 & A(13-C) = 9.26, D^*CHCl_5 + liver & 85T001 \\ & hepatocytes & CHCl_5 & Toluene & 14.32 & 2.03 & photolysis of CHBrCl_7 or CHCl_5 & 86DA01 \\ CHCl_2 & Toluene & 14.32 & 2.03 & photolysis of CHBrCl_7 or CHCl_5 & 86DA01 \\ CHCl_2 & C/M 2:1 & 14.67 & 2.37 & chloroform + hepatocytes & 85T001 \\ CHCl_2 & C/M 2:1 & 14.70 & 2.37 & deuterated chloroform + hepatocytes & 85T001 \\ CHCl_2 & C/M 2:1 & 14.70 & 2.38 & bromodichloromethane + hepatocytes & 85T001 \\ (anoxic) & (anoxic) & (CHCl_2 & C/M 2:1 & 14.67 & 2.38 & bromodichloromethane + hepatocytes & 85T001 \\ CHCl_2 & C/M 2:1 & 14.77 & 2.38 & hepatocytes + CH_Cl_2 & 86DA01 \\ CHCl_2 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CH_Cl_5 & 86DA01 \\ CHCl_7 & Toluene & 13.60 & 1.84 & photolysis of CH_5, SAL02 \\ CH_7 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CH_7 & 86DA01 \\ CHBr_2 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CH_7 & 86DA01 \\ CHBr_3 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_5 & 85AL02 \\ CHr_7 & Toluene & 13.52 & 1.76 & photolysis of CBr_4 & 86DA01 \\ CHBr_3 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + 1.2-dichlorotenane & 85AL02 \\ CHR_7 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + 1.2-dichlorotenane & 85AL02 \\ CHr_7 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_5 & 85AL02 \\ CHr_7 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_5 & 85AL02 \\ CHr_7 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + 1.2-dichlorotenane & 85AL02 \\ CHr_7 & C/M 2:1 & 14.85 & 3.01 & hepatocytes + 1.2-dichlorotenane & 85AL02 \\ CCl_7 & CH_7 & C/M 2:1 & 14.65 & 3.01 & hepatocytes + 1.2-dichlorotenane & 85AL02 \\ C$					"CCI4	
$\begin{array}{cccccl_1} & W(7) & 15.54 & 2.66 & photolysis of CBrCl_1 & 86DA01 \\ CCl_2 & CCl_4 & 14.0 & 1.5 & x-ray radiolysis of CCl_4 & 87HA01 \\ CHCl_2 & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_5 & 85AL02 \\ CHCl_2 & C/M 2:1 & 14.66 & 2.37 & hepatocytes + CHRCl_2 & 85AL02 \\ CHCl_2 & C/M 2:1 & 14.66 & 2.37 & hepatocytes + CHRCl_1 & 85BA01 \\ D^*CHCl_2 & C/M 2:1 & 14.67 & 2.37 & A(13-C) = 9.26, D^*CHCl_3 + liver & 85T001 \\ & hepatocytes & CHRCl_2 & C/M 2:1 & 14.70 & 2.37 & A(13-C) = 9.26, D^*CHCl_3 + liver & 85T001 \\ \hline CHCl_2 & C/M 2:1 & 14.67 & 2.37 & chloroform + hepatocytes & CHCl_3 & 86DA01 \\ CHCl_2 & Toluene & 14.32 & 2.03 & photolysis of CHBrCl_3 or CHCl_3 & 86DA01 \\ CHCl_2 & Toluene & 14.32 & 2.03 & photolysis of CHBrCl_3 or CHCl_3 & 86DA01 \\ CHCl_3 & W(7) & 15.40 & 2.72 & photolysis of CHBrCl_3 or CHCl_3 & 86DA01 \\ CDCl_2 & C/M 2:1 & 14.70 & 2.37 & deuterated chloroform + hepatocytes & 85T001 \\ \hline (anoxic) & (anoxic) & (anoxic) & CHCl_3 & 85T001 \\ \hline (CHCl_4 & C/M 2:1 & 14.67 & 2.38 & bromvdichloromethane + hepatocytes & 85T001 \\ \hline (CHCl_5 & W(7) & 15.40 & 2.38 & bromvdichloromethane + hepatocytes & 85T001 \\ \hline (CHCl_5 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CH_2Cl_2 & 86DA01 \\ \hline (CHBr_2 & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_3 & 85AL02 \\ \hline (CHBr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 85T001 \\ \hline (CHBr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 85AL02 \\ \hline (CHBr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 85AL02 \\ \hline (CHBr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHBr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHCl_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHFr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHFr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHGr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHGr_5 & C/M 2:1 & 14.87 & 2.38 & bromoform + hepatocytes & 86DA01 \\ \hline (CHCl_5 & C/M 2:1 & 14.85 & 2.25 & hepatocytes + 1,1,1-trich$	'CCl,	Toluene	13.60	1.86	photolysis of CBrCl ₃	86DA01
$\begin{array}{ccccc} CCl_{1} & CCL_{1} & 14.0 & 1.5 & x-ray radiolysis of CCL_{1} & 87HA01 \\ CHCl_{2} & C/M 2:1 & 14.67 & 2.37 & hepatocytes + CHCl_{3} & 85AL02 \\ CHCl_{2} & C/M 2:1 & 14.66 & 2.37 & hepatocytes + CHBrCl_{2} & 85AL02 \\ CHCl_{2} & C/M 2:1 & 14.66 & 2.37 & hepatocytes + CHBrCl_{2} & 85AL02 \\ CHCl_{2} & C/M 2:1 & 14.70 & 2.37 & A(13-C) = 9.26, "CHCl_{3} + liver & 85T001 \\ hepatocytes \\ CHCl_{2} & C/M 2:1 & 14.70 & 2.37 & A(13-C) = 9.26, "CHCl_{3} + liver & 85T001 \\ hepatocytes \\ CHCl_{2} & Toluene & 14.32 & 2.03 & photolysis of CHBrCl_{2} or CHCl_{3} & 86DA01 \\ CHCl_{3} & W(7) & 15.40 & 2.72 & photolysis of CHBrCl_{2} or CHCl_{3} & 86DA01 \\ CDCl_{2} & C/M 2:1 & 14.77 & 2.38 & brom-dichloromethane + hepatocytes \\ CHCl_{4} & C/M 2:1 & 14.67 & 2.38 & brom-dichloromethane + hepatocytes \\ CHCl_{4} & C/M 2:1 & 14.77 & 2.38 & hepatocytes + CHCl_{4} & 85T001 \\ CHCl_{4} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHCl_{5} & 85T001 \\ CHBr_{2} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHCl_{4} & 85DA01 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes + CHBr_{5} & 85AL02 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes (anoxic) & 85DA01 \\ CHBr_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes (anoxic) & 85DA01 \\ CHCl_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes (anoxic) & 85T001 \\ CHCl_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes (anoxic) & 85T001 \\ CHCl_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes (anoxic) & 85T001 \\ CHCl_{5} & C/M 2:1 & 14.87 & 2.38 & hepatocytes (anoxic) & 85T001 \\ CHCl_{5} & C/M 2:1 & 14.85 & 2.25 & hepatocytes + 1,1,1-trichloroethane & 85AL02 \\ CCl_{5} & C/M 2:1 & 14.65 & 2.25 & hepatocytes + 1,1,1-tr$	·CCl,	₩(7)	15.54	2.66	photolysis of CBrCl ₃	86DA01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·CCl,	CC)4	14.0	1.5	x-ray radiolysis of CC1,	87HA01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·CHCl ³	C/M 2:1	14.67	2.37	hepatocytes + CHCl,	85AL02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	'CHCl ₂	C/M 2:1	14.66	2.37	hepatocytes + CHBrCl ₂	85AL02
¹⁵ CHCl ₂ C/M 2:1 14.70 2.37 $A(13-C) = 9.26$, ¹⁵ CHCl ₃ + liver 85T001 CHCl ₂ C/M 2:1 14.67 2.37 chloroform + hepatocytes (anoxic) ² 85T001 CHCl ₂ Toluene 14.32 2.03 photolysis of CHBrCl ₃ or CHCl ₃ 86DA01 CHCl ₂ W(7) 15.40 2.72 photolysis of CHBrCl ₃ or CHCl ₃ 86DA01 CDCl ₂ C/M 2:1 14.70 2.37 deuterated chloroform + hepatocytes 85T001 (anoxic) (anoxic) (anoxic) (anoxic) (anoxic) (anoxic) CHCl ₂ C/M 2:1 14.67 2.38 bromodichloromethane + hepatocytes 85T001 (anoxic) (anoxic) (anoxic) (anoxic) (anoxic) (anoxic) (anoxic) CH ₂ Cl C/M 2:1 14.67 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 86DA01 CH ₂ Cl Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 CBr ₃ Toluene 13.52 1.76 ph	CHCl ₂ or CH ₂ Cl	CH ₂ Cl ₂	13.1	1.6	photolysis of alphz-phenylbenzoin	85BA01
CHCl2 C/M 2:1 14.67 2.37 chloroform + hepatocytes (anoxic) ² 85T001 CHCl2 Toluene 14.32 2.03 photolysis of CHBrCl3 or CHCl3 86DA01 CHCl2 W(7) 15.40 2.72 photolysis of CHBrCl3 or CHCl3 86DA01 CHCl2 C/M 2:1 14.70 2.37 deuterated chloroform + hepatocytes 85T001 CHCl2 C/M 2:1 14.67 2.38 bromodichloromethane + hepatocytes 85T001 CHCl2 C/M 2:1 14.77 2.38 hepatocytes + CH2Cl2 85AL02 CH ₂ Cl C/M 2:1 14.77 2.38 hepatocytes + CH2Cl2 85AL02 CH ₂ Cl C/M 2:1 14.87 2.38 hepatocytes + CH2Cl2 85AL02 CH ₂ Cl C/M 2:1 14.87 2.38 hepatocytes + CHBr3 85AL02 CBr3 Toluene 13.52 1.76 photolysis of CBr4 86DA01 CBr5 W(7) 15.44 2.64 photolysis of CBr4 86DA01 CBr5 W(7) 15.44 2.64 photolysis of CBr4 86DA01 CHBr2 <t< td=""><td>¹³.CHCl⁵</td><td>C/M 2:1</td><td>14.70</td><td>2,37</td><td>A(13-C) = 9.26, "CHCl₃ + liver</td><td>85TO01</td></t<>	¹³ .CHCl ⁵	C/M 2:1	14.70	2,37	A(13-C) = 9.26, "CHCl ₃ + liver	85TO01
CHCl ₂ C/M 2:1 14.67 2.37 chloroform + hepatocytes (anotic) ³ 851001 'CHCl ₂ Toluene 14.32 2.03 photolysis of CHBrCl ₂ or CHCl ₃ 86DA01 'CHCl ₂ W(7) 15.40 2.72 photolysis of CHBrCl ₂ or CHCl ₃ 86DA01 'CDCl ₂ C/M 2:1 14.70 2.37 deuterated chloroform + hepatocytes 85T001 'CDCl ₂ C/M 2:1 14.70 2.38 bromodichloromethane + hepatocytes 85T001 'CHCl ₂ C/M 2:1 14.77 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CH ₂ Cl C/M 2:1 14.77 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 85AL02 'CH ₃ Cl Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 'CBr ₃ W(7) 15.44 2.64 photolysis of CBr ₄ 86DA01 'CH ₃ Cl C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH ₃ Cl C/M 2:1 15.44 2.64 photolysis of CBr ₄ </td <td></td> <td>C . A A A</td> <td></td> <td></td> <td>hepatocytes</td> <td></td>		C . A A A			hepatocytes	
CHCl ₂ Toluene 14.32 2.03 photolysis of CHBrCl ₂ or CHCl ₃ 86DA01 'CHCl ₂ W(7) 15.40 2.72 photolysis of CHBrCl ₂ or CHCl ₃ 86DA01 'CDCl ₂ C/M 2:1 14.70 2.37 deuterated chloroform + hepatocytes 85T001 'CHCl ₂ C/M 2:1 14.67 2.38 bromodichloromethane + hepatocytes 85T001 'CH ₂ Cl C/M 2:1 14.77 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 85DA01 'CHBr ₂ C/M 2:1 14.87 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 85AL02 'CH ₃ C/M 2:1 14.87 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CBr ₃ Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 'CBr ₃ W(7) 15.44 2.64 photolysis of CBr ₄ 86DA01 'CH ₃ C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic)	CHCl ₂	C/M 2:1	14.07	2.37	chlorotorm + hepatocytes (anoxic) ²	851001
CHCl ₂ W(7) 15.40 2.72 photolysis of CHBrCl ₂ or CHCl ₃ 86DA01 CDCl ₂ C/M 2:1 14.70 2.37 deuterated chloroform + hepatocytes 85T001 'CHCl ₂ C/M 2:1 14.67 2.38 bromodichloromethane + hepatocytes 85T001 'CH ₂ Cl C/M 2:1 14.77 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 85AL02 'CH ₃ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 85AL02 'CH ₃ Cl Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 'CBr ₃ Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 'CBr ₃ W(7) 15.44 2.64 photolysis of CBr ₄ 86DA01 'CH ₃ Cl C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH ₃ Cl C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH ₃ ClCH ₄ Cl C/M 2:1 14.65 3.01 hepatocytes + 1,2-dichloroethane <td>CHCl₂</td> <td>Tojuene</td> <td>14.32</td> <td>2.03</td> <td>photolysis of CHBrCl₂ or CHCl₃</td> <td>86DAUI</td>	CHCl ₂	Tojuene	14.32	2.03	photolysis of CHBrCl ₂ or CHCl ₃	86DAUI
CDCl ₂ C/M 2:1 14.70 2.37 deuterated chlorotorm + hepatocytes 851001 CHCl ₂ C/M 2:1 14.67 2.38 bromodichloromethane + hepatocytes 851001 CH ₂ Cl C/M 2:1 14.67 2.38 bromodichloromethane + hepatocytes 851001 CH ₂ Cl C/M 2:1 14.77 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 85AL02 'CHBr ₂ C/M 2:1 14.87 2.38 hepatocytes + CH ₂ Cl ₂ 85AL02 'CBr ₃ Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 'CBr ₃ W(7) 15.44 2.64 photolysis of CBr ₄ 86DA01 'CHBr ₂ C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CHBr ₂ C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CHBr ₂ C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CHBr ₂ C/M 2:1 14.65 3.01 hepatocytes + 1,2-dichloroetha	CHCl ₂	W(/)	15.40	2.72	photolysis of CHBrCl ₂ or CHCl ₃	86DAUI
CHCl2 C/M 2:1 14.67 2.38 bromodichloromethane + hepatocyte's 85T001 'CH2Cl C/M 2:1 14.77 2.38 hepatocytes + CH2Cl2 85AL02 'CH2Cl C/M 2:1 14.77 2.38 hepatocytes + CH2Cl2 85AL02 'CH2Cl Toluene 13.60 1.84 photolysis of CH2Cl2 86DA01 'CHBr2 C/M 2:1 14.87 2.38 hepatocytes + CHBr3 85AL02 'CBr3 Toluene 13.52 1.76 photolysis of CBr4 86DA01 'CBr3 W(7) 15.44 2.64 photolysis of CBr4 86DA01 'CHBr2 C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CHBr4 C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CHBr2 C/M 2:1 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 'CCL2CH2 C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	CDCi ₂	C/M 2:1	14.70	2.37	deuterated chlorolorm + hepatocytes	851001
CH12114.072.38hepatocytes + CH2Cl285AL02(anoxic)(anoxic)(anoxic)85AL02'CH2ClToluene13.601.84photolysis of CH2Cl285AL02'CHBr2C/M 2:114.872.38hepatocytes + CHBr385AL02'CBr3Toluene13.521.76photolysis of CBr286DA01'CBr3W(7)15.442.64photolysis of CBr486DA01'CHBr2C/M 2:114.872.38bromoform + hepatocytes (anoxic)85T001'CHBr2C/M 2:114.053.01hepatocytes + 1,2-dichloroethane85AL02'CCl2CH3C/M 2:114.652.25hepatocytes + 1,1,1-trichloroethane85AL02	CHCI-	C/M 2:1	14.67	2.38	bromudichloromethane + henatocytes	857001
CH_2ClC/M 2:114.772.38ht patocytes + CH_2Cl_185AL02'CH_2ClToluene13.601.84photolysis of CH_2Cl_286DA01'CHBr_2C/M 2:114.872.38hepatocytes + CHBr_385AL02'CBr_3Toluene13.521.76photolysis of CBr_486DA01'CBr_3W(7)15.442.64photolysis of CBr_486DA01'CHBr_2C/M 2:114.872.38bromoform + hepatocytes (anoxic)85T001'CH2ClCH_2ClC/M 2:1'14.053.01hepatocytes + 1,2-dichloroethane85AL02'CCl_2CH_3C/M 2:114.652.25hepatocytes + 1,1,1-trichloroethane85AL02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				(anoxic)	
'CH ₂ Cl Toluene 13.60 1.84 photolysis of CH ₂ Cl ₂ 86DA01 'CHBr ₂ C/M 2:1 14.87 2.38 hepatocytes + CHBr ₃ 85AL02 'CBr ₃ Toluene 13.52 1.76 photolysis of CBr ₄ 86DA01 'CBr ₃ W(7) 15.44 2.64 photolysis of CBr ₄ 86DA01 'CHBr ₂ C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CHgClCH ₂ Cl C/M 2:1 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 'CCl ₂ CH ₃ C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	CH2CI	C/M 2:1	14.77	2.38	hepatocytes + CH ₂ Cl ₂	85AL02
CHBr2 C/M 2:1 14.87 2.38 hepatocytes + CHBr3 85AL02 'CBr3 Toluene 13.52 1.76 photolysis of CBr3 86DA01 'CBr3 W(7) 15.44 2.64 photolysis of CBr4 86DA01 'CHBr2 C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH2ClCH2C1 C/M 2:1 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 'CCl2CH3 C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	.CH'CI	Toluene	13.60	1.84	photolysis of CH ₂ Cl ₂	86DA01
'CBr ₃ Toluene 13.52 1.76 photolysis of CBr. 86DA01 'CBr ₃ W(7) 15.44 2.64 photolysis of CBr. 86DA01 'CHBr ₂ C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH ₂ ClCH ₂ Cl C/M 2:1' 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 'CCl ₂ CH ₃ C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	'CHBr ₂	C/M 2:1	14.87	2.38	hepatocytes + CHBr ₃	85AL02
'CBr3 W(7) 15.44 2.64 photolysis of CBr4 86DA01 'CHBr2 C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH2ClCH2Cl C/M 2:1' 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 'CCl2CH3 C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	'CBr ₁	Toluene	13.52	1.76	photolysis of CBr.	86DA01
'CHBr2 C/M 2:1 14.87 2.38 bromoform + hepatocytes (anoxic) 85T001 'CH2CICH2CI C/M 2:1' 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 'CCl2CH3 C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	'CBr ₃	W(7)	15.44	2.64	photolysis of CBr.	86DA01
CH2CICH2C1 C/M 2:1 14.05 3.01 hepatocytes + 1,2-dichloroethane 85AL02 CCI2CH3 C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	'CHBr,	C/M 2:1	14.87	2.38	bromoform + hepatocytes (anoxic)	85TO01
CCl ₂ CH ₃ C/M 2:1 14.65 2.25 hepatocytes + 1,1,1-trichloroethane 85AL02	CH2CICH2CI	C/M 2:1	14.05	3.01	hepatocytes + 1,2-dichloroethane	85AL02
	CCI,CH,	C/M 2:1	14.65	2.25	hepatocytes + 1,1,1-trichloroethane	85AL02

Table 2 (Continued). PBN Spin Adduct Parameters

Adduct	Solvent	A _N /G	A _{II} /G	Other, [g-value], Source	Reference(s)
CHCICH,CI	C/M 2:1	14.55	2.95	hepatocytes + 1,1,2-trichloroethane	85AL02
H ₂ CBrH ₂ ' or H ₂ CHC'Br	C/M 2:1	14.5	2.15	A(13-C) = 9.2, 1,2 dibromoethane + hepatocytes	83TO03
'CCl ₂ CCl ₃	Tolucne	13.52	1.92	photolysis of hexacloroethane	86DA01
CHCICF,	· McOH	14.4	2.25	rat liver hepatocytes + halothane	83TO01
CF,C'HCI	W?	14.5-15.0	2.5-3.0	rat liver lipid extract after halothane	84FU01
CHCICF,	Toluene	13.72	`1.92	photolysis of CF ₃ CHClBr	86DA01
CHCICF,	W(7)	15.47	· 2.67	photolysis of CF ₁ CHClBr	86DA01
'CHI,	C/M 2:1	14.95	1.90	A(X) = 8.0, iodoform + hepatocytes	85AL02, 85TO01
Halothanc-C'	C/M 2:1	14.6	2.4-2.5	in vivo halothane from liver	81PO01
Unidentified radical	W(P7.4)	not	given	halothane and microsome-cytochrome	82FU01
Linolenate-C'	W	16.2	3.0	linolenate acid emulsion + Fe(II)	83AZ01
Linolenate-C'	W	15.8	2.8	linolenatic acid emulsion + gamma radiolysis	83AZ01
Methyl linolcate-C'	Benzene	15.03	2.83	ML + DBPO	84YA01
Lipid dienvl	W(TR7.5)	not	ziven	microsomes & CCL (see also 80PO01)	79KA02
1.'	W	15.83	3.31	[2.005] chloroplasts + oxyfluorfen	84LA01
Ĩ.	Ŵ	15.83	3.31	[2.005] chloroplasts + dinhenvl ethers	84LA01
Ū.	W(P7 4)	14.5	3 25	microsomes + CCL + NADPH	84MC01
Ŭ,	W(P7 A)	14.5	3.25	microsomes + CCL + NADPH	84MC01
	W(D7 5)	14.9	2.23	andothelial cells + menodiona	849001
L Lints and all (Ct)	W(FIJ)	14.0	2.5	in vive adjetion of basis then extracted	841 A01
Lipid radical (C)	C/M 2:1	14.04	3.92	in vivo radiation of brain then extracted	BELADI
Lipid radical (C)	C/M 2:1	14.75	3.25	in vivo radiation or brain then extracted	BOLAUI
Lipid radical (C)	C/M 2:1	14.97	4.01	in vivo radiation of spicen then extracted	86LAUI
Membrane-C	Hexane	14.4	3.3	3-methylindole + microsomes	84KUUI
Carbon-centered	Hexane	14.4	3.2	lung extracts after 3-methylindole	86BR01, 85KU01
Carbon-centered	Hexane	14.4	3.2	microsomes + 3-methylindole	86BR01, 85KU01
Phenyl	Benzene	14.41	2.21	PAT	75JA01
Phenyl	Benzenc	14.41	2.21	phenylazotriphenylmethane	77OH01
Phenyl radical	Benzene	13.71-13.83	2.08-2.14	photolysis of 15 different organo-Pb, .Sn, or .Hg compounds	69JA01
Phenyl radical	30 different	14,10-15,96	2.00-4.21	PAT	82JA01
		$A_{\rm H} = 1.11$	lA _N -13.69	for the phenyl radical ** (See also 82JA03)	82JA01
Pheny)	W(P7.4)	16.2	4.3	[2.0054] phenvilhydrazine + erythrocytes	83HI01
Phenyl	Hexane	14.25	2 10	A(13-C) on observice) = 7.38(2) PAT	841A03
Phenyl	Toluene	14 39	2.10	A(13.C on phenyls) = 7.41(2) PAT	841403
Phenyl (FNDOR)	Renzene	+ 14 57	+2.16	$A_{} = 0.09(A)$ PAT at 200 K	841404
Phenyl (LINDON)	AcN	14.70	2.10	$A_{\rm H} = 0.05(4)$, that at 250 K	848507
Dhenyl	Rentune	14.70	2.70	decay of tritisted bestere	REUTANI
4-Methyl-C _s H ₄	CH ₂ Cl ₂	14.25	2.19	phenylbenzoin + 4-Me-C ₆ H ₄ N ₂ BF ₄ +	85BA01
4-tert-Butyl-C.H.	CH ₂ Cl ₂	/ 14.40	2.50	phenylbenzoin + 4- <i>iert</i> -butyl-C ₆ H ₄ N ₂ BF ₄	85BA01
·CU C U	D	17 68 13 01	2 21 2 41	+ light	601401
	Denzene	13.88-13.91	2.31-2.44	photolysis of organo-Po, -Sn or -Pig	09JAUI
CH ₂ C ₆ H ₃	Toluene	14.41	2.83	[2.004/] alkylcobaloximes + light	/8MAU1
Tetralyl	Benzene	14.30	2.26	tetralin + teri-BuO	//OHUI
Cumyl	Benzenc	14.25	2.19	cumene + tert-BuO	77OH01
Benzoyl radical	30 different	14.17-14.83	4.14-4.76	benzaldehyde + tert-BuO	82JA01
		A _H = 0.65	5A _N -4.79	for the benzoy! radical	82JA01
Benzoyl	W(P7.8)	16.0	4.35	[2.0055] PBN + Fe(III)	82TE01
Benzoyl	Benzene	14.0	4.46	alpha-phenylbenzoin + light	85BA03
Benzoyi	CH ₂ Cl ₂	14.1	4.47	alpha-phenylbenzoin + light	85BA03
Diphenyl ketyl	Benzene	14.1	2.13	alpha-phenylbenzoin + light	85BA03
4-Nitrophenyl	30 different	14.12-15.09	1.90-2.97	4-nitrophenylazotriphenylmethane $A_{\rm H} = 1.08A_{\rm N}$ -13.24 for the 4-nitro-	82JA01 82JA01
N3 [.]	W P	15.01	2.01	phenyl radical $A_N = 2.01, K_3[Co(CN)_5N_3]$ photolysis,	79RE01
N '	W	14.0	3 1	$s_{1/2} = 20.5$	901403
M . 147	W W/	14.9	4.1	$\pi_{\rm N} = 2.1$, remon system with azide	001402
N	vv	14.91	2.23	$\pi_{\rm N} = 2.25$, peroxyaisullate + aziae	
1 4 3	₩ 112	15.01	2.01	$\pi_{N} = 2.01, \pi_{3}[CO(CN)_{3}N_{3}] + UV$	OUTAUZ
143 N	W W	15.05	2.00	$\pi_{\rm N} = 2.00, c$ uradiation	OUNEUL
M 3	*	15.4	2.1	$A_N = 2.1$, memylene blue + light with azide	82MAU2

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
N ₃ '	AcN	14.06	1.89	$A_{\rm N} = 1.89$, electrochemical oxidation of	82WA02
N.	AcN	14.10	1.90	$A_{\rm N} = 1.90$, diazonium salt + heat	84RE07
N.	W(P7.6)	15 25	2.35	A(14-N) = 20 catalase/H.O. + azide	85KA01
15N.1	W(Ac5 0)	15.25	2.55	$A(15-N) = 2.8 \text{ UDD/U} \cap \pm \text{arida}$	851 401
N '	W(ACJ.0)	14.07	2.55	$A(13-N) = 2.0, \text{ nRr}/n_2O_2 + \text{ adde}$	OJNAUI
[4]	*	14.97	2.10	$A_{N} = 2.10$, peroxydisuirate + azide + UV	63KE04
'NH ₂	W	16.14	3.54	$A_{\rm N} = 1.23, A_{\rm H} = 0.54(2);$ peroxydisul- fate + N ₃ ⁻ + UV	85RE05
'NHNH1	CHCl	16.6	3.1	microsomes + hydrazine	85NO01
'NCO	W	15.91	3.21	$A_{\rm N} = 1.89$, KOCN + peroxydisulfate	80JA02
'NCO	W	5.76	3.26	$A_{\rm N} = 1.81, {\rm KOCN} + {\rm UV}$	80JA02
'NCO	AcN	15.09	3.15	$A_{\rm N} = 1.84$, tetracthylammonium OCN,	80JA02
'NCO	Achi	15.10	2 1 8	electrochemical	1 848507
(CCN) -		15.10	3.16	$A_{\rm N} = 1.65$, diazonium sait + ultrasound	* 84KEU/
(SUN)2*	ACN	14.44	1.09	$A_N = 3.70$, diazonium sait + UV	84KEU/
Indole (N)	Hexane	13.9	3.6T	$A_N = 2.3$, indoles + KO ₂	83KU01
Indole(N')	Hexane	13.9	3.6	$\Lambda_N = 2.3$, microsomes + 3-methylindole	84KU01
Indole (N')	Hexane	13.9	3.6	$A_{\rm N} = 2.3$, microsomes + 3-methylindole	85KU01
CH ₃ C ₆ H ₄ SO ₃ N ⁽ H)	W(5)	15.63	3.38	$A_{\rm N} = 1.75$, chloramine-T in acid	85EV02
Above rearranged	W(5)	7.1		$A_{\rm N} = 4.2$, chloramine-T in acid	85EV02
CH ₃ C ₆ H ₄ SO ₂ N'(Na ⁺)	W(8.5)	15.58	3.25	$A_N = 1.63$, chloramine-T + light	85EV03
.0H	W/	16 1) 7E	[2 0057] H O + 11V links	7413 +01
·01	** \$\$/	13.3	2.13	· [2:003/] ngOg + UV lignt	74MAUL
OH	w	15.0	2.7	radiolysis of water	76SA01
OH	W	15.5	2.75	[2.0061] H ₂ O ₂ + UV light	77LA01
.OH	W(P7.4)	15.5	2.75	microsomes + NADPH	77LA01
'OH	Benzene	14.12	2.01	$H_{1}O_{1} + UV$	78JA02
'OH	W	15.49	2.74	Fe(III)-ADP-H.O.	78JA02
'OH		$A_{} = 0.6$	0446.53	summary of A's given	781402
.0H	W	20.2	28.0	12 0045; electrolycic of water	788 401
.0h	W(D7 A)	16.26	20.7	[2,0045] electrolysis () water	70KAU1
OH	W(P7.4)/DMSO 9:1	16.0	3.4	[2.0061] microsomes + NADPH [2.0061] semiquinone of mitomycin +	78LO01
юн	W/DMSO 9:1	16.0	3.4	[2.0061] Fenton system	781.001
юн	w	15.3	not given	[2.0057] Fe(1])-Bleomycin	7851101
ЮН	W(6.9)	15.3	not given	[2.0057] BLM or Tallysomycin and Cu(I) or Fe(II)	79SU01
.OH	w	15.6	27	e implication	BOK EO1
	w	15.0	16 77		POSCOL
	w w	13.3-13.0	2.0-2	$f_1(m) + n_2 O_2$	803C01
UH	W	15.6	2.0	$Fe(II)$ sultate + H_2O_2	80SC01
OH	W(0.9)	15.3	not given	[2.0057] Fe(II)-bleomycin + oxygen	80SU01
OH	Ethyl acetate	-	2.1	Fenton system	81BÖ01
OH	W ·	15.35	2.7	TiO + light	82AU01
OH	W(P7.4)	15.3	2.75	$H_2O_2 + UV$ or decomposition of	82FI01
OH	W(TR7.5)	16.2	3.38	quinone drugs + NADPH and cytochrome P-450	82KO01
OH	W(TR9.1)	15.6	36	[2 0053] rifamycin SV	828004
OH	W(P7 0)	10.V	iven	Fe(11)-RI M or Fenton system	878005
00	W/D7 9)	אר אר אר איז	517CH 3 7	12 (067) Exter and an	
	π(r/.0)	13.3	2.1	[2.003/] renton system	821EUI
"OH"	w	15.46 15.46	2.72	$5U_4^{-7}$ + ASU ₂ ⁻⁷ hexachloroplatinate + light; Cl. and	54RE01 84RE02
"ОН"	W	15.46	2.72	nyarojysis trans-[Co(1,2-diamino-etane),Cl ₂]Cl +	84RE08
он	W(P7.5)	15.5	2.7	adriamycin + cytochrome P-450 reductase	84SU01
ОН	W(P7.5)	15.5	2.7	enzymatic reduction of autooids	84TE01
OH	W(P7 A)	16.0	2.7	(2 AOK3) Elliptinium contate U A E-	850[101
ON COL	···(4 / ····)	10.0	J.4 3 76	12.0003 Employment decide, 1302 , re 12003 130 120	
	W 117	(3.49	2.13	ng(CN) ₂ + UV light	SJKEUI
	₩	15.53	2.72	$i_{12}U_{2} + UV$	85RE03
UH	W	15.98	3.12	gamma radiolysis of water	86LA01
OH"	W	15.5	2.72	persulfate + Ag(I)	86MO03
"O]":OH"	W	15.5	2.72	A(17-O) = 3.36, persulfate + Ag(I)	86MO03
он	W(P7.0)	not 2	iven	Fenton system or Fe(II)BLM + H ₂ O ₂	86RO01
ОН	Ethyl acetate	13.71	2.1	Fenton system	87TR01
			2	· · · · · · · · · · · · · · · · · · ·	

Table 2 (Continued). PBN Spin Adduct Parameters

.

Adduct	Solvent	A _N /G	<i>A</i> ₁₁ /G	Otiler, [g-value], Source	Reference(s)
юон	w	14.8	2.75	12.00571 H ₂ O ₂ + UV light	74HA01
1001	Benzene	14.28	2.25	autoxidation of cyclohexa-1.4-diene	77OH01
'OOH	W	14.9	2.8	[2.0057] Fe(II)-bleomycin	78SU01
'OOH	W(TR7.4)	14.8	2.75	microsomes + mitomycin C	80KA01
'OOH	AcN	14.8	3.0	oxidizing ML + $FeCl_{2}$	80SC01
'OOH	W .	15.0	3.2	Cumene hydroperoxide + Fe(11)sulfate	80SC01
'OOH	W(6.9)	14.9	2.8	[2.0057] Fe(II)-bleomycin + oxygen	80SU01
НОО	Ethyl acetate		4.5	KO_2 or NADPH + cytochrome P-450	81BÖ01
'OOH	CH ₃ Cl ₃	13.40	1.25	trioxolane, -60°C	81PR02
'OOH	W(P7.5)	14.8	2.89	enzymatic reduction of quinoids	84KU01
'OOH	W(P7.4)	14.81	2.7	microsomes/paraquat/NADPH	86MO03
HOO, {0,1	W(P7.4)	14.81	2.7	A(17-0) = 2.7, microsomes/paraquat/	86MO03
OOH	Ethyl acetate	14.90	4.28	KO ₂	87TR01
CH'O.	McOH	14.37	2.86	paraquat + UV	73LE01
СН,0'	MeOH and W	14.50	2.94	peroxydisulfate	73LE01
СН,О'	W/McOH 2:1	14.90	3.35	paraquat + UV	73LE01
CHJO.	W/McOH 2:1	14.93	3.32	peroxydisulfate	73LE01
CH'0.	McOH	14.5	2.80	gamma-irradiated McOH	74MA01
сн,о.	McOH	14.3	2.95	gamma-irradiated McOH	75ZU01
Ch _J O [·]	McOH	14.2	2.7	Ce(IV) + light	79RE01
CH'O.	McOH	14.5	2.8	decay of tritiated MeOH	84HA01
CH ₃ CH ₂ O'	EtOH and W	14.49	2.68	paraquat + UV	73LE01
CH'CH'O.	EtOH	14.4	2.6	Ce(IV) + light	79RE01,
r-PrO'	n-PrOH	14.3	2.5	Ce(IV) + light	79RE01
2-PrO'	2-PrOH	14.60	2.20	paraguat + UV	73LE01
2-PrO'	2-PrOH	14.4	2.2	Ce(IV) + light	79RE01
I-BuO'	n-BuOH/W 5:1	14.40	2.42	paraguat + UV	73LE01
2-BuO'	AcN	13.80	2.27	electrolysis of TBABBu, with oxygen	79BA01
n-BuO'	n-BuOH	14.3	2.5	Ce(IV) + light	79RE01
-BuO'	Benzene	13.6	2.0	tributyltin chromate	81RE01
-BuO'	CH ₂ Cl ₂	13.6	2.2	tributyltin chromate	81RE01
ec-BuO'	Benzene	13.94	1.91	[2.0062] lead tetraacetate + peroxide,	77ME01
sec-BuO'	sec-BuOH	14.4	2.2	Cc(IV) + light	79RE01
so-BuO'	iso-BuOH	14.4	2.3	Ce(IV) + light	79RE01
ert-BuO'	Benzene	14.21	1.83	tert-BuOOC(O)C(O)OO-tert-BU	77OH01
ert-BuO'	Toluene	13.62	1.72	[2.0064] di- <i>tert</i> -butylketone + UV, 273 K	78HO01
ert-BuO' ["O]	Toluene	13.62	. 1.72	A(17-0) = 5.05, di-tert-butylketone +	78HO01
ert-BuO'	tert-BuOH	14.0	14	$C_{\ell}(IV) + light$	79R F01
crt-BuO'	Renzenc	/ 14.29	1 84	di-tert-hutylperoxide	82HA01
ert-BuO'	Renzene	14.11	1.83	tert-BuOOC(O)C(O)OO-tert-Bu	83NI01
ert-BuO'	Benzenc	14 48	1.85	tert-BuOOE(0)e(0)00 tert-Bu	83NI01
ert-BuO'	Benzene	14.40	1.84	$tert_BuOCH_Ph + tert_BuO' + MNP$	83NI01
ert-BuO' (FNDOR)	Renzene	+ 14 48	+173	$A_{ii} = -0.70(4) \text{ distant but vice row victor}$	841404
-Pentyloxyl	Renzene	13.80	2 21	[7 (062)] lead totracetate + nerovide RT	77MF01
-Pentyloxyl	AcN	13.82	2.21	$KO \rightarrow 1$ -bromomentane	700 401
Feteralulory	Denzene	13.83	2.27	tetralulOOH as Co(II)	92NI01
At O.	AcN	14.10	2.20	ovidined ML + EnCl	805C01
	ACT AT	14.6-13.3	2.0	$\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} + \partial $	805001
	ML W	14.0	1.0-2.0	oxidizing ML + re(ii)suitate	805001
Jumene-O	W 117	14.0	3./	cumene nyaroperoxide + recl ₃	805001
umene-O	W	14.4	3.4	cumene nydroperoxide + re(1)sullate	SUSCUI
.0	rreon-11	13.7	1.8	ozone + methyl linoleate, K l	812803
.0	W(P7.4)	13.8	2.0	microsomes + CCl ₄ + NADPH	84MC01
0	W(P7.4)	13.5	2.0	microsomes + CCL + NADPH	84MC01
Ŋ.	W(P7.4)	13.88	2.17	microsomes + CCl ₄ + NADPH under oxygen	84MC01
D.	Benzene	14.22	2.10	methyl linoleate hydroperoxide + Co(II)	84YA01
D.	Folch	13.8	2.2	liver extract with AMOL in vivo	85MI02
0	W(P7.4)?	13.8	2.2	liver homogenate + MLOOH	85MI01
	W(P7.4)	16.1	3.0	microsomes + MLOOH	85MI01
, LO and/or LOO	Freon-11	13.7	1.8	ozone + methyl linoleate, - 40°C	81PR01
		_			

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
RO'	Benzene	13.76	1.99	cigarette, cigar or pipe smoke	71BL01
Alkovyl radical	Benzene	13.6	19	ciparette smoke	85CH03, 84PR01
Alkoxyl radical	Benzene	13.8	19	cigarette smoke using solid PBN plass	85CH03, 84PR01
Alkovyl radical	Renzene	13.7	20	civarette smoke using solid PBN silica	85CH03, 84PR01
Alkovyl radical	Ronzone	13.7	2.0	NO/isonene/air	85CH03 84PR01
Alkoxyl radical	Denzene	13.0	2.1	NO/isoprene/all	
Alkoxyl radical	Benzene	13.7	2.0		
Alkoxyl radical		13.8	1.6	cigarette smoke	83CHU3, 84PKU1
Alkoxyl radical	Benzene	1.5.03	2.0	mainstream cigarette smoke	85HAU2
Vinyl nitroxide?	Benzene	10.25	_	munstream cigarette smoke	85HAU2
Cigarette smoke	r-BB	13.4	1.8	sidestream cigarette smoke: an oxy radical	83PR01
Acetoxyl	CH ₂ Cl ₂	13.4	1.4	ozone + dimethylacetylene, -70°C	82PR01
Acetoxyl	Benzene	12.84	1.73	lead tetraacetate + light	68JA01
Acetoxyl	Benzene	12.84-13.10	1.73-2.05	photolysis of organometallics	69JA01
Benzovloxvl	Benzene	12.76	1.40	benzoyl peroxide	68JA01
Benzovloxyl	Benzene	12.6-12.85	1.20-1.48	organometallic or peroxides	69JA01
Benzovloxyl	Benzene	13.07	1.44	benzovi neroxide	82BE01
Bonzovlovyl	Ronzene	13.22	1.44	$A_{\rm m} = 0.11(4)$ benzovi peroxide	841404
(ENDOR)	Denzene	15.22	1.41		017701
Acyloxyl or peroxyl	TME	13.1	1.4	ozonation of TME	83PR02
PBNO'	Ŵ	15.8	2.0	$Ti(III) + H_2O_2$	80SC01
PBNO'	Ŵ	15.9	1.6-1.9	PBN + FeCl ₃	80SC01
PBNO'	AcN	15.7	2.0	Peroxidized methyl linoleate + FeCl ₃	80SC01
sec-BuOO'	CH ₂ Cl ₂	13.50	1.40	[2.0062] lead tetreacctate + peroxide, 193 K	77ME01
tert-BuOO'	CH ₂ Cl ₂	13.39	1.19	[2.0062] lead tetraacetate + peroxide at 193 K	77ME01
tert-BuOO'	Benzene	13.40	1.57	autoxidation of tert-BuOOH	77OH01
tert-BuOO'	Benzene	13.34	1.25	tert-BuOOH + tert-BuO'	77OH01
tert-BuOO'	Toluene	12.65	0.95	[2.0064] di- <i>tert</i> -butylkctone + UV, 213 K	78HO01
tert-BuOO'	Toluene	13.42	0.95	[2.0064] di- <i>tert</i> -butylketone + UV, 253– 273 K	78HO01
tert-BuOO' [17O]	Toluene	12.85	0.95	A(17-0) = 2.9, di-tert- butylketone + UV 213 K	78HO01
tert-BuOO'	Benzene	13.35	1.38	ieri-BuOOH + ieri-BuO'	83N101
tert-BuOO'	Benzene	13.53	1.39	tert-BuOOH + Co(11)	83NI01
Cumyldioxyl	Benzene	13.55	1.82	autoxidation of cumylhydroperoxide	77OH01
Cumvldioxyl	Benzene	13.54	1.71	cumyl hydroperoxide + tert-BuO	77OH01
Tetralyldioxyl	Benzene	13.66	1.84	autoxidation	77OH01
Tetralyldioxyl	Benzene	13.68	1.84	tetraly hydroperoxide + tert-BuO'	770H01
Tetralyldioxyl	Benzene	13 79	1 98	tetralyl hydroneroxide + Co(11)	83NI01
Tetraluldiovul	Renzene	13.06	1 94	tetraly hydroperoxide + tert. BuO'	R3NI(1
Totalyluloxyl	Benzene	13.90	1.97	totralul hudronerovide + lead totracetate	RANIOI
Tetralyidioxyi	Всписле	13.00	1.03	tetraliz i sont Ruci i o	BONIOI
letralyldioxyl	Benzenc	13.81	1.88	tetrain + tert-BuO + O_2	83NIUI
a-Methylbenzyl- dioxyl	Benzenc	13.57	1.78	autoxidation	770H01
a-Methylbenzyl-	Benzene	13.54	1.82	photolysis of azobis-α-phenylethanc under O	77OH01
MINO	MI	14 4	2.2	ovidizing MI + FeCl.	805001
MLOO.	Benzene	13.44	1.63	methyl linoleate hydroperoxide +	84YA01
n-C ₅ H ₁₁ OO'	CH ₂ Cl ₂	13.44	1.39	[2.0062] lead tetraacetate + peroxide, 193 K	77ME01
C ₄ H ₅ C(CH ₃) ₂ OO ⁻	CH ₂ Cl ₂	13.46	1.47	[2.0062] lead tetraacetate + peroxide, 193 K	77ME01
C ₁₈ H ₃₇ OO'	CH ₂ Ci ₂	13.50	1.61	[2.0062] lead tetraacetate + peroxide, RT	77ME01
n-C ₁₀ H ₁₂ OO'	Benzene	13.86	2.18	[2.0062] lead tetraacetate + peroxide RT	77ME01
CCI.00.	CCL	13.5	1.6	eamma-irradiation	85CH01 825Y01
CCI.00.	CCI.	13	1 61	e imadiation of CC1. about 175 K	RULLUI
Ory Contand	Herane	12 7	2 0	derived from phoenhate buffer	SAK1101
-000 2-	W	1.J.7 18 A4	1 84	werrow trous hurshildle natter	SEDEUK
·DO 2-	••••••••••••••••••••••••••••••••••••••	13.40	1.04	A(21 D) = 21.66 A = 0.272	OJREUJ Ocheni
rugo -	••• \$17	13.8/	J.1J 3 17	A(21 D) = 16.02 A = 1.04.0.07(2)	OF REAL
	₩ A - N1	10.08	3.17	$n(31-r) = 10.03, n_{\rm H} = 1.84, 0.2/(2)$	askeus
USU;	ACN	13.90	1.23		85KEU5
·020 ¹ -	AcN/W 6:1	13.90	1.23	peroxydisultate photolysis	85KE03

Table 2 (Continued). PBN Spin Adduct Parameters

Adduct	Solvent	' A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
SO1-	W	14.95	1.97	$A_{\rm H} = 0.34(2)$	85RE05
AsO4 ⁺ oxy-centered	W	15.46	2.72	$A(As, 1 = 3/2) = 0.96, S_2O_8^{2-} + Na_2HAsO_4$ and light	84RE01
Cysteinyl	₩(M7.0)	15.7	3.4	$t_{1/2} = 5 \text{ min}, \text{ Ce(IV)} + \text{ cysteine}$	83GR01
p-CIC.H.S'	Benzenc	13.8	1.8	$t_{10} = 0.38s$, photolysis of the disulfide	84IT01
p-CH.OC.H.S	Benzene	13.9	1.8	$t_{1/2} = 0.15$ s, photolysis of the disulfide	84IT01
CH,C.H.S.O.	W(8.5)	14.75	2.25	chloraminc-T + light	85EV03
F'	Benzene	12.2	1.18	A(19-F) = 45.6	85RE05
CI.	AcN	12.27	0.82	A(CI-35,37) = 6.20, 5.12; electro- chemical	80JA02
Cl.	Benzene	12.12	0.75	A(Cl-35,37) = 6.05, 4.88; electro- chemical	80JA02
Cl.	CCL	12.22	0.8	A(CI-35,37) = 6.08, 5.0; electro- chemical	80JA02
Cl'	CCl4	12.2	0.7	A(35-Cl) = 6.1, radiolysis of CCl ₄	85CH01, 825Y01
CI.	AcN	12.70	0.82	A(CI-35,37) = 6.20, 5.12; electro- chemical	82WA02
CI.	AcN	12.70	0.89	A(Cl-35,37) = 6.20, 5.12, hexachloroplatinate	84RE02
Cl.	AcN	12.70	0.82	A(C -35,37) = 6.20, 5.12	85RE05
CI.	Tolucne	12.32	0.70	A(Cl-35,37) = 6.16, 5.17, photolysis of CCL, CBrCl ₁ , C ₂ CL	86DA01
CI.	CCl₄	12.25	0.75	$A(Cl-35,37) = 6.25, 5.2; CCl_{4} x-ray radiolvsis$	87HA01
Br'	Benzene	11.3		A(Br-79,81) = 32.4, 34.9; bromine + light, $t_{1/2} < 2s$	84RE10
Unidentified	₩	16.1	2.7	Fe(II)sulfate + H ₂ O ₂	80SC01
Unidentified	₩	15.9	3.7	Fe(II)sulfate, ascorbate, EDTA, H ₃ O ₂	80SC01
Unidentified	W	15.9	3.7	cumene hydroperoxide + Ti(III)-citrate	80SC01
Unidentified	W	16.5	3.6	PBN + Fe(11)sulfate	80SC01
Unidentified	AcN	14.5-15.0	2.7-2.9	oxidized ML + Fe(II)sulfate	80SC01
Unidentified	W	17.1	14.0	cumene hydroperoxide + Fe(II)sulfate	80SC01
PBN'	W	16.2	3.5	cumene hydroperoxide + Ti(III)-citrate	80SC01
PBN'	W	16.1	3.7	cumene hydroperoxide + FeCl,	80SC01
PBN'	W	16.0-16.3	3.7	cumenc hydroperoxide + Fe(11)sulfate	80SC01
PENOx	CH ₂ Cl ₂	8.0		ozone + dimethylacetylene, -30°C	82PR01
PBNOx	CCI4	7.95		CCl ₄ x-ray radiolysis	87HA01
tert-butyl aminoxyl	W	14.58	13.90	degradation of PBN by SO_4^{-} + AsO_2^{-}	84RE01

,

•This adduct is thought to be an oxygen-centered radical (E. G. Janzen, personal communication, 1987). •Reference 221A03 also shows the variation in A_N and A_H for eight different solvents as well as A(15-N) and A(13-C). In addition the temperature dependence of the hyperfine splittings are investigated.

The values of A_H and A_N were inadvertently interchanged in 83KU01 (E. G. Janzen, personal communication, 1987).

Table 3*.	MNP Spin Adduct	Parameters (Also	referred to as t-NB	and NtB)†

.

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
H' (e- + H*)	w	14.4	14.4	rzdiolysis of water	76SA01
e ⁻ + H ⁺	W	14.34	13.85	proflavin + 440 nm light	78LI01
e- + H*	W(TR7.5)	14.4	14.4	NaBH, reduction or microsomes	79KA01
H.	W(4.0)	14.55	13.95	sulfanilamide + UV	80CH03
H' (reduction + H ⁺)	W(>4.5)	14.55	14.0	[2.0059] methionine + 'OH	83DA01
H. 4	W	14.7	14.2	porphyrin photosensitization (occasionally)	84MO01
e ⁻ + H ⁺ (reduction)	W(HEPES7.4)	14.4	14.4	reduction of MNP by mitochondria	86KE01
e ⁻ + H ⁺ (reduction)	W(P7.8)	14.4	14.4	reduction of MNP by RSVM + AA	86SC02
e ⁻ + H ⁺	W(P7.6)	14.6	14.4	reduction by HRP/styrene/H2O2/GSH	86ST01
e ⁻ + D ⁺	D,O	14.34		$A_{\rm D} = 2.1$, proflavin + 440 nm light	78LI01
e" + D*	D,O	14.0		$A_{\rm D} = 2.2$, NaBH, reduction	79KA01
'CH	Benzene	15.25	11.3(3)	diacyl peroxide	70PE01
.СН,	W(TR9.0)	16.2	13.3(3)	cumene hydroperoxide + metmyo- globin	78GR01

4.

Table 3* (Continued). MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)†

CH, CH, CH, W(P7.8) W(1.5) 17.20 (PA) 14.203 (PA) gramm relicipies of MNP 80AA05.79MA05.79MA05. (PA) CH, W(P7.8) 17.00 14.203 (PA) CPA W(PA) NSA CH, W(P1.8) W(P1.8) 17.8 14.203 (PA) Decomption semiquinuse 84KA01 CH, W(P1.8) W(P1.1) 17.2 14.235 (PA) Decomption semiquinuse 84S102 CH, W(P1.8) W(REPEST.4) 17.3 14.435 (PA) DEcomption 84S102 CH, CH, W(HEPEST.4) W(REPEST.4) 17.3 14.433 (PA) DEcomption 84S102 CH, CH, W(HEPEST.4) Bearance 15.2 10.020 (PA) minut anilobysis of MNP 80AA5.79MA02 r-Bay CH, CL, Mauschinkingle-CH, Bearance 15.0 9.021 (PA) minut anilobysis of MNP 80AA5.79MA02 CH, CH, W(H-Bay) Bearance 15.0 9.021 (PA) minut anilobysis of MNP 80AA5.79MA02 CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	Adduct	Solvent	A _N /G	A _{II} /G	Other, [g-value], Source	Reference(s)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.СН'	W(11.5)	17.3	14.2(3)	gamma radiolysis of MNP	80MA05,79MA02
'CH, W(P7.8) 17.0 14.2503 [2.0053] additinguinance 84KA01 'CH, W(P1) 17.8 14.250 Processatine + HRP 845002 CH, W(P1) 17.2 14.351 Processatine + HRP 845002 CH, W(P1) 17.2 14.351 Processatine + HRP 85502 CH, W(HEPEST4) 17.3 14.307 20 85501 CH,CH, Benzees 15.1 10.0420 dissel premide 85502 835001 ref-Bui CH4CI, 15.2 9.9(2) inbusly in chromate + UV 81RE01 CCHAS, (c. terr-butyl) Benzees 15.0 MNP + terr-BuO 80MA05.79MA02 terr-Buyl Benzees 15.0 MNP + terr-BuO 81RE01 70.00 CHAS, (CH4) Benzees 15.0 MNP + terr-BuO 81RE01 70.00 CHAS, (CH4) Benzees 15.0 9.9(2) A, = 0.6(2) 61.07 70.02 70.02 70.02 70.02 70.02 70.02	CH,	W	17.20	14.20(3)	CPZ or H_2O_2 + DMSO and UV light	82L103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·CH,	W(P7.8)	17.0	14.25(3)	[2.0055] adriamycin semiquinone + 1-BuOOH	84KA01
'CH, W(7.1) 17.2 14.3(2) [2.055] photodecomposition of solution of sol	.СН	W(B10)	17.8	14.5(3)	procarazine + HRP	845102
CH, W I7.1 14.2.30 220 nm UV on acctic acid 85CA01 CH, H W(HEPES 7) 17.3 14.3.30 rer:BuOOH and mitcohodnia 86KE01 CHC(H), W(P7.4) 15.5 10.4.20 discly peroxide 70FE01 <i>x</i> -Bui CH(CI), W(P7.4) 15.5 9.9(2) tribuyl in chromate + UV 81RE01 <i>x</i> -Bui CH(CI), 0.0(2) tribuyl in chromate + UV 81RE01 <i>x</i> (CH, b), (5.c. tert-butyl)—see also DTBN sensame 15.0 MNP + tert-BuO 80MA05.79MA02 <i>tert</i> -Buyl Benzene 15.0 9.9(2) A _y = 0.6(2), discly peroxide 70FE01 <i>CH</i> , CH Benzene 15.0 9.9(2) A _y = 0.6(2), discly peroxide 70FE01 <i>CH</i> , CH Memere 15.3 5.4(2) perolivin + 440 nm light 78E01 CH, OH W(P7.4) 15.5 1.8 6.4(2) perolivin + 400 nm light 78L01 CH, OH W(P7.4) 15.5 1.8 Fenon system with MOH 79L03 79L03 79	·CH,	W(7.1)	17.2	14.5(3)	[2.0055] photodecomposition of bleomycin	85AN01
CH, h W(HEPS7.4) 17.3 14.3(3) tert-BuOH and mitochoofma 86KE01 CH;CH; h, W(P7.4) 16.6 2.0 iproniazid + PCS 335101 n-Bu' CH;CI; 15.2 9.9(3) thiouyl in chromate + UV 81RE01 n-Bu' Benzene 15.1 10.0(2) thiouyl in chromate + UV 81RE01 tert-Buyl Benzene 15.0 10.0(2) thiouyl in chromate + UV 81RE01 tert-Buyl Benzene 15.0 10.0(2) thiouslast + PSN, -30°C 80N101 tert-Buyl Benzene 16.6 11.2(2) $A_x = 1.4.$ diacyl proxide 70°E01 M-succinnityl-CH; Benzene 16.6 11.2(2) $A_x = 1.4.$ diacyl proxide 70°E01 M-succinnityl-CH; Benzene 15.4 6.42 CH/Min + 440 nm light 72L01 CH/OH W(P7.4) 15.4 2.30 diverr-buylprenyoular 70°E01 CH/OH W(P7.4) 15.4 2.31 diverr-buylprenyoular 70°E01 CH/OH W(P7.4) 15.2	'CH,	W	17.1	14.2(3)	220 nm UV on acetic acid	85CA01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'CH ₃	W(HEPES7.4)	17.3	14.3(3)	tert-BuOOH and mitochondria	86KE01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·CH2CH3	Benzene	15.25	10.4(2)	diacyl peroxide	70PE01
n-Bui CH ₄ C ₁ 15.2 9.9(2) tribuyl in chromate + UV 81RE01 ren-Bui Benzene 15.1 10.0(2) tribuyl in chromate + UV 81RE01 ren-Buiyl Benzene 15.0 minut + turyl in chromate + UV 80MA05.79MA02 terr-Buyl Benzene 15.0 MNP + terr-BuO 80M101 terr-Buyl Benzene 15.0 MNP + terr-BuO 80M101 CH ₂ (CH ₃) Benzene 15.0 9.9(2) A _n = 1.4, discyl peroxide 70PE01 CH ₂ (CH ₃) Benzene 15.0 9.9(2) A _n = 1.4, discyl peroxide 70PE01 CH ₂ (OH MOHW 15.2 5.65(2) prolavin + 440 nm light 78L101 CH ₂ (OH W(P7.4) 15.3 6.42(2) Featon system with MeOH 79LA03 CH ₂ (OH W(P7.4) 15.2 2.06 prolavin + 440 nm light 70PE01 CH ₂ (CH OH W(P7.4) 15.2 2.06 prolavin + 440 nm light 78L01 CH ₂ (CHOH w(Aet.6, 0 16.1 2.12	·CH(CH ₃) ₂	W(P7.4)	16.6	2.0	iproniazid + PGS	83SI01
n-Bai Benzene [5,1] [10,0(2) Inbuty (in chromite + UV BIRED (CC(H_1), (i.c., rerr-buty)) = set and the set of the set o	n-Bu`	CH ₂ Cl ₂	15.2	9.9(2)	tributyl tin chromate + UV	81RE01
$\begin{array}{c} {\rm ClC(A), (Le. tert-buty)} = {\rm See also DTBN} \\ {\rm terr-Buty} & {\rm Benzene} & {\rm IS.0} & {\rm MNP} & {\rm solution} & {\rm $	n-Bu'	Benzene	15.1	10.0(2)	tributyl tin chromate + UV	81RE01
Intr-Buly W(11.5) 1.2 gamma modysis of MAP bottom bottom intr-Buly Benzene 15.0 introacian+ PBN, -30°C 81NR01 intr-Buly CH ₂ (CH, 15.84 introacian+ PBN, -30°C 81NR01 M-succinimidy-CH, Benzene 16.6 11.22 $A_{\mu} = 1.4$, discy peroxide 70PE01 N-succinimidy-CH, Benzene 16.6 11.22 $A_{\mu} = 1.4$, discy peroxide 70PE01 CH,OH MODH 16.2 5.45(2) profaxin = 440 nm light 78L101 CH,OH MOPH 15.4 6.22(2) 15.4HPETE + RSVM + MOCH 85RC01 CH,OH W(P7.4) 15.5 1.8 Fenton system with EIOH 79E101 CH,C'HOH W(P.1) 15.5 1.8 Fenton system with EIOH 79E101 CH,C'HOH W(P.1) 15.5 1.8 fenton system with EIOH 79E101 CH,C'HOH w(P.1) 16.5 1.12 indeir-buly peroxyosalate 70PE01 CH,C'HOH n-POH 14.1 1.8 i	C(CH ₃) ₃ (i.c. tert-butyl)—sec als	O DTBN	17.0			
Intri-Buly1 Benzene 15.0 Mint + Hr1-Buly Solution CH2(L) 15.84 Tiroxolane + PSN, -30°C B1R02 CH2(L), Benzene 15.0 9.9(2) $A_{1} = 0.6(2)$, discyl peroxide 70PE01 CH2(L), Benzene 15.0 9.9(2) $A_{1} = 1.4$, discyl peroxide 70PE01 CH2(D) MeOH 15.2 5.45(2) profavin + 440 nm light 78L101 CH4(D) MeOH 15.3 6.4(2) Featon system with MCOH 79LA03 CH4(D) W(77.4) 15.3 6.4(2) Featon system with EOH 79LA03 CH,OH W(77.4) 15.5 1.8 Featon system with EOH 79LA03 CH,CH0H W(77.4) 15.5 1.8 Featon system with EOH 79LA03 CH,CH0H W(74.4) 15.6 13.1(2) A_1 = 400 nm light 78L101 CH,CHOH W(74.4) 15.6 13.1(2) A_1 = 0.5(2), 2-chloreE0H + B4MC01 79L03 CH,CH,OH W(74.4) 15.6 13.1(2) A_1 = 0.5(2), 2	teri-Bulyl	W(11.5)	17.2		gamma radiolysis of MNP	SUMAUS, /9MAU2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ieri-Bulyi	Benzene	15.0		MNP + IEFI-BUU	81DD00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Benzaro	13.84	0.0(2)	A = 0.6(2) diacul perovide	70PE01
Presidential integration Description 1 = (2, 2) $r_{1} < c_{1} < r_{1} < c_{1} < r_{1} < r_$		Benzene	13.0	9.9(2)	$A_{\rm H} = 0.0(2)$, diacyl peroxide	70PE01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH OH	Manual	14.0	5 45(2)	$A_N = 1.4$, ulacyl peroxide	781 101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MeOli	13.2	J.4J(2) A 8(7)	di-tert-butyloeroxyoxalate	702501
CHQH W(HCH) 12.5 0.700 Filth Ministry 12.5 CHQH W(HCH) 15.4 6.25(2) 15.44 6.25(2) 15.44 6.55(2) CH,OH EOH 14.5 2.3 di-err-butytperoxyonatate 70PE01 CH,C'HOH EOH 14.5 2.3 di-err-butytperoxyonatate 70PE01 CH,C'HOH EOH 15.2 2.06 proflavin + 400 milph 79LA03 CH,C'HOH W(P(7, 8) 16.6 12.12 and e-otscits atid + HKP + EOH 86MO04 CH,C'HOH W(Ac4, 6.0 16.1 2.12 control of the	CHON	W(D7 A)	14.2	$\frac{4.0(2)}{6.4(2)}$	Fention system with MeOH	701 403
CH,OHW(P7.8)15.415.516.416.715.416.715.416.715.416.715.416.715.416.715.416.715.416.715.416.715.416.715.416.716.716.717.717.617.717.617.717.617.717.617.717.617.717.617.717.617.717.617.717.717.617.7<	СНОН	W/McOH 1+1	15.0	10 5(2)	12 00551 photodecomposition of	85AN01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	citon		15.0	;	bleomycin	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·CH3OH	W(P7.8)	. 15.4	6.25(2)	15-HPETE + RSVM + MeOH	86SC01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	СНЪС.НОН	EtOH	14.5	2.3	di-tert-butylperoxyoxalate	70PE01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	СН'С.НОН	W(P7.4)	15.5	1.8	Fenton system with EtOH	79LA03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ³ C.HOH	EtOH/W	15.2	2.06	proflavin + 440 nm light	78L101
CH ₁ CH ₂ (H)CH W(9.1) 16.6 13.1(2) $A_n = 0.5(2)$, 2-chlorder.OH + B&MOOI CH ₂ CH ₂ CHOH n=PrOH 14.1 1.8 di-tert-bulytproxyoxalate 70PE01 CHO CH ₂ CH ₂ 7.0 1.4 dictromate + UV 82RE01 YC(O)CH, MeOH 7.8 phenyl actate + UV 82RO05 YC(O)CH, Benzene 7.8 phenyl actate + UV 82RO05 YC(O)CH, Dioxane 8.0 phenyl actate + UV 82RO05 YC(O)CH, Dioxane 8.0 phenyl actate + UV 82RO05 YC(O)CH, Dioxane 8.0 phenyl actate + UV 82RO05 YC(O)CH, CHCl, 12.2 A(CI-35.37) = 3.3, 2.7; dichromate 82RE01 'CCl, CHCl, 12.5 $A_0 = 2.2(3)$, dirtert-butylperoxy- 70PE01 'CCl, CCl, 6.75 A((13-C) = 5.7, A(35-C1) = 0.6; 85CH01, 82SY01 'COCI CCl, 6.75 A(13-C) = 2.40, photolysis of CBrCl, 86DA01 COC 'COCI CHCl, 6.7	CH ³ C.HOH	W(Ac4.6)	16.1	2.12	indole-3-acetic acid + HKP + EIOH	86M004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH2CH2OH	W(9.1)	10.0	13.1(2)	$A_{H} = 0.5(2)$, 2-chloroElOH + porphyrin + light	84MUU1
CHO CH, Cl, 7.0 1.4 dehtromate + UV 82RE01 C(O)CH, MeOH 7.8 phenyl acetate or actonilide + UV 82R005 C(O)CH, AcN 7.9 phenyl acetate + UV 82R005 C(O)CH, Benzene 7.8 phenyl acetate + UV 82R005 C(O)CH, Dioxane 8.0 phenyl acetate + UV 82R005 C(O)CH, Dioxane 8.0 phenyl acetate + UV 82R005 C(O)CH, Dioxane 8.0 phenyl acetate + UV 82R001 C(C)CH, Dioxane 8.0 phenyl acetate + UV 82R001 C(C)CH, CHCl, 12.2 Ac(1-35,37) = 3.3, 2.7; dichromate 82RE01 'CCl, CHCl, 12.5 $A_{o} = 2.23$ (3), di-tert-butylperoxy- 70PE01 oxalate CCl, CCl, 6.75 A(13-C) = 2.40; photolysis of CBrCl, 86DA01 86C2(2) 'COCI CCl, 6.73 A(13-C) = 2.25(3); photolysis of CBrCl, 86DA01 85CA01 acid 'CH,-COO' W(9.1) 16.0 8.5(2) Gi ye porphrin + light 84M001 82RE01 'CH,-CA,-COO' <t< td=""><td>СН'СН'С.НОН</td><td>n-PrOH</td><td>14.1</td><td>1.8</td><td>di-tert-butylperoxyoxalate</td><td>70PE01</td></t<>	СН'СН'С.НОН	n-PrOH	14.1	1.8	di-tert-butylperoxyoxalate	70PE01
C(O)CH, McOH 7.8 phenyl acetate or acctonilide + UV 82R005 C(O)CH, AcN 7.9 phenyl acetate + UV 82R005 C(O)CH, Benzene 7.8 phenyl acetate + UV 82R005 C(O)CH, Dioxane 8.0 phenyl acetate + UV 82R005 C(O)CH, Dioxane 8.0 phenyl acetate + UV 82R005 C(I)CH, Dioxane 8.0 phenyl acetate + UV 82R005 C(I)CH, Dioxane 8.0 phenyl acetate + UV 82R005 CH,CI W 16.2 8.5(2) dye + light and monochloroacetic axis 85CA01 TCCI, CHCI, 12.5 $A_o = 2.2(3)$, di-tert-butylperoxy- oxalate 70PE01 CCCI, CCL, 13.1 A(35-CI) = 2.42(3), photolysis of CBrCI, 85CH01,82SY01 86DA01 COCI CCL, 6.75 A(13-C) = 2.74(35-CI) = 0.6; 85CH01,82SY01 COCI CCL, 6.75 A(13-C) = 5.7, A(35-CI) = 0.6; 85CH01,82SY01 CHCL, 6.7 dictromate + UV 82RE01 CH,-CH,-COO ⁻ W(9.1) 16.0 8.5(2)	СНО	CH ₂ Cl ₂	7.0	1.4	dichromate + UV	82RE01
C(i)C(H), C(O)CH, C(O)CH, C(O)CH, DioxaneAcN7.9 7.9 Dimpliancial + UV DioxanePhenyl actate + UV phenyl actate + UV phenyl actate + UV s2R005S2R005 S2R005C(i)C(H), C(H), C(H), C(L),Dioxane8.0 IS.2phenyl actate + UV phenyl actate + UV s2R005S2R005C(i)C(H), C(L), C(L),C(H), C(L), C(L),12.2Al(C(1-35,37)) actate + UVS2R005 S2R005C(I), C(L), C(L),C(H), C(L), C(L),12.5 $A_{\rm C} = 2.2(3)$, di-tert-butylperoxy- oxalate70PE01 oxalate'C(C), C(L), C(C), C(C), C(C), C(C), C(C),Toluene C(L), 	·C(0)CH,	MeOH	7.8		phenyl acetate or acetonilide + UV	82RO05
Cloich, C	°C(0)CH,	ACN	7.9		phenyl acetate + UV	82R005
Cloch, CH,Cl Dioxane 8.0 point actate OV SAKOS CH,Cl W 12.2 dys + light and monochloroacetic acid 85CA01 'CCl, CHCl, 12.2 A(Cl-35,37) = 3.3, 2.7; dichromate 82RE01 'CCl, CHCl, 12.5 $A_{o} = 2.2(3)$, di-tert-butylperoxy- 70PE01 'CCl, CCl, 13.1 A(35-Cl) = 2.25(3), photolysis of 85CH01,82SY01 'CCl, Toluene 12.56 A("Cl) = 2.40, photolysis of 85CH01,82SY01 'CCl, CCl, 6.75 A(13-Cl) = 5.7, A(35-Cl) = 0.6; 85CH01,82SY01 'CCl, CCl, 6.7 dichromate + UV 82RE01 'COCI CHCl, 6.7 dichromate + UV 82RE01 'CH,CHCOO' W (9.1) 16.0 8.5(2) dip + pophyrin + light 84MO01 'CH,CH_2-COO' W 16.8 12.2(2) $A_{\mu} = 0.65(2), dyc, light and succinic 85CA01 acid 2.MP 7.7 coranision of 2.MP 83PR02 CCL CH,CH,CH,-COO' W 16.6 13.1(2) A_{\mu} = 0.60(2), dye + light and succinic $	·C(0)CH3	Benzene	/.8		phenyl acetate + UV	82K005
CH,CL W 16.2 8.3(2) Oye Hight and monochrotactic acid SSCA01 CHCl ₂ CHCl ₃ 12.2 A(Cl-35.37) = 3.3, 2.7; dichromate SSCA01 'CCl ₃ CHCl ₃ 12.5 $A_0 = 2.2(3)$, di-tert-butylperoxy- 70PE01 CCl ₃ CCl ₄ 13.1 A(35-Cl) = 2.25(3), photolysis of 85CH01,82SY01 'CCl ₃ Toluene 12.56 $A(^{12}Cl) = 2.40$, photolysis of CBrCl ₃ 86DA01 'COCI CCl ₄ 6.75 A(13-Cl) = 5.7, A(35-Cl) = 0.6; 85CH01,82SY01 'COCI CCl ₄ 6.7 dichromate + UV 82RE01 'COCI CHCl ₅ 6.7 dichromate + UV 82RE01 'CH ₂ COO' W(9,1) 16.0 8.5(2) Gly + porphyrin + light 84MO01 'CH ₂ COO' W 16.8 12.2(2) $A_M = 0.65(2)$, dye, light and succinic 85CA01 acid 2-MP 7.7 coronal acid 81PR02 coronal acid 82MO01 'CH ₂ COO' W 16.6 13.1(2) $A_M = 0.5(2)$, dye, light and succinic 85CA01 acid 2-MP <th< td=""><td>C(U)CH,</td><td>Dioxane</td><td>8.0</td><td>0.6(0)</td><td>phenyl acetate + UV</td><td>828003</td></th<>	C(U)CH,	Dioxane	8.0	0.6(0)	phenyl acetate + UV	828003
CHCl ₃ CHCl ₃ 12.2 $H(Cl^{-5}, 5, 3)$ $2.5, 2.7$ (definiting the second seco		W	10.2	8.5(2)	dye + light and monochloroacetic action $A(C 25,27) = 2,2,2,2$ disbased	1 63CAUI
'CCl, CHCl, 12.5 $A_D = 2.2(3)$, di-tert-butylperoxy-oxalate '/OPE01 'CCl, CCl, CCl, 13.1 A(35-Cl) = 2.25(3), photolysis of B5CH01,82SY01 'CCl, CCl, Toluene 12.56 A(¹³ Cl) = 2.25(3), photolysis of CBrCl, B6DA01 'COCl CCl, CCl, 6.75 A(13-Cl) = 5.7, A(35-Cl) = 0.6; 85CH01,82SY01 'COCl CHCl, 6.7 dichromate + UV 82RE01 'CH,COO' W(9.1) 16.0 8.5(2) Gly e photosensitization with malonic acid 85CA01 acid 'CH,CH,-COO' W 16.8 12.2(2) $A_{\mu} = 0.65(2)$, dye, light and succinic 85CA01 acid 'CH,CH,-COO' W 16.8 12.2(2) $A_{\mu} = 0.63(2)$, dye, light and succinic 85CA01 acid 'CH,CH,-COO' W 16.6 13.1(2) $A_{\mu} = 0.65(2)$, dye, light and succinic 85CA01 acid 'CH,CH,OH W 16.6 8.5(2) Gly + porphyrin + light 84MO01 porphyrin + light 'CH,CH,OH W 16.6 8.5(2) Gly + porphyrin + light 84MO01 porphyrin + light 'CH,CH,OH W 16.0 8.5(2)			12.2		+ UV	02REVI
CCl ₃ CCl ₄ 13.1 $A(35-Cl) = 2.25(3)$, photolysis of $B5CH01, B2SY01$ CCl ₃ Toluene 12.56 $A^{(35-Cl)} = 2.40$, photolysis of $CBrCl_3$ $86DA01$ COCI CCl ₄ 6.75 $A^{(13-Cl)} = 5.7, A(35-Cl) = 0.6;$ $85CH01, 82SY01$ COCI CHCl ₃ 6.7 dichromate + UV $82RE01$ CCH ₄ COO ⁻ W(9.1) 16.0 $8.5(2)$ dip + porphyrin + light $84M001$ 'CH ₄ COO ⁻ W 16.8 $12.2(2)$ $A_{14} = 0.65(2)$, dye, light and succinic $85CA01$ acid CH ₄ CH ₂ COO ⁻ W 16.8 $12.2(2)$ $A_{14} = 0.65(2)$, dye, light and succinic $85CA01$ Acyl radical CH ₄ Cl ₂ 7.85 trioxolane + PBN, -60°C $81PR02$ CH ₂ CH ₄ OH W 16.6 $13.1(2)$ $A_{14} = 0.65(2)$, dye, light and succinic $85CA01$ CH ₄ CH ₄ OH W 16.6 $13.1(2)$ $A_{14} = 0.60^{\circ}C$ $81PR02$ CH ₂ CH ₄ OH W 16.6 $13.1(2)$ $A_{14} = 0.65(2)$, dye light and glutaric $85CA01$ CH ₄ CH ₄ OH W 16.7 $12.1(2)$ $A_{$	·CCl,	CHCl,	12.5		$A_{\sigma} = 2.2(3)$, di- <i>tert</i> -butylperoxy- oxalate	70PE01
'CCl ₁ Toluene 12.56 $A(^{13}C) = 2.40$, photolysis of CBrCl, 86DA01 'COCI CCl ₄ 6.75 $A(^{13}C) = 5.7, A(35-C1) = 0.6;$ 85CH01,82SY01 'COCI CHCl ₃ 6.7 dichromate + UV 82RE01 'COCI CHCl ₃ 6.7 dichromate + UV 82RE01 'CH ₂ COO ⁻ W(9.1) 16.0 8.5(2) Gly + porphyrin + light 84MO01 'CH ₂ COO ⁻ W 16.8 12.2(2) $A_{H} = 0.65(2)$, dye, light and succinic 85CA01 acid CH ₂ CH ₂ COO ⁻ W 16.8 12.2(2) $A_{H} = 0.65(2)$, dye, light and succinic 85CA01 acid CH ₂ CH ₂ COO ⁻ W 16.8 12.2(2) $A_{H} = 0.65(2)$, dye, light and succinic 85CA01 acid CH ₂ CH ₂ 7.85 trioxolane + PBN, -60°C 81PR02 CH ₂ CH ₃ OH W 16.6 13.1(2) $A_{H} = 0.5(2)$, 2-chloroethanol + 84MO01 CH ₂ -COO ⁻ W 16.0 8.5(2) Gly + porphyrin + light 84MO01 'CH ₂ -COO ⁻ W 16.7 12.1(2) $A_{H} = 0.65(2)$, dye light and glutaric 85CA01	·CCl,	CCI	13.1		$A(35-Cl) = 2.25(3)$, photolysis of CCl_4	85CH01,82SY01
COCI CCL 6.75 $A(13-C) = 5.7, A(35-C1) = 0.6;$ 85CH01,82SY01 COCI CHC1, 6.7 dichromate + UV 82RE01 CCL, -COO ⁻ W(9.1) 16.0 8.5(2) Gly + porphyrin + light 84M001 CH ₂ COO ⁻ W 16.8 12.2(2) $A_{\rm H} = 0.65(2), dye, light and succinic 85CA01 acid acid acid 85CA01 acid 85CA01 CH2COO- W 16.8 12.2(2) A_{\rm H} = 0.65(2), dye, light and succinic 85CA01 Acyl radical CH2Cl2 7.85 trioxolane + PBN, -60°C 81PR02 Acyl radical 2-MP 7.7 ozonation of 2-MP 83PR02 'CH2-COO- W 16.6 13.1(2) A_{\rm M} = 0.52(2), 2-chloroethanol + 84M001 'CH2-COO- W 16.0 8.5(2) Gly + porphyrin + light 84M001 'CH2-COO- W 16.7 12.1(2) A_{\rm M} = 0.60(2), dye + light and glutaric 85CA01 'CH2-COO- W 16.7 10.3(2) A_{\rm M} = 0.60(2), dye + light and seba- 85CA01 'CH2(CH2)D-COO-$.CCl ³	Toluene	12.56		$A(^{33}Cl) = 2.40$, photolysis of CBrCl ₃	86DA01
'COCI CHCl ₃ 6.7 dichromate + UV 82RE01 'CH ₂ COO ⁻ W(9.1) 16.0 8.5(2) Gly + porphyrin + light 84MO01 'CH ₂ COO ⁻ W 16.0 8.6(2) dye photosensitization with malonic 85CA01 acid acid acid acid 85CA01 acid 85CA01 'CH ₃ CH ₂ COO ⁻ W 16.8 12.2(2) $A_{H} = 0.65(2)$, dye, light and succinic 85CA01 Acyl radical CH ₃ Cl ₂ 7.85 trioxolane + PBN, -60°C 81PR02 Acyl radical 2-MP 7.7 ozonation of 2-MP 83PR02 'CH ₃ CH ₂ COO ⁻ W 16.6 13.1(2) $A_{\mu} = 0.55(2)$, dye light and succinic 85CA01 'CH ₂ COO ⁻ W 16.0 8.5(2) Gly + porphyrin + light 84MO01 'CH ₂ COO ⁻ W 16.7 12.1(2) $A_{\mu} = 0.65(2)$, dye light and glutaric 85CA01 'CH ₂ -CCO ⁻ W 16.7 10.3(2) $A_{\mu} = 0.60(2)$, dye + light and seba- 85CA01 'CH ₂ CH ₂ -COO ⁻ W 16.7 10.3(2) $A_{\mu} = 0.60(2)$, dye + light and seba- </td <td>'COCI</td> <td>CCI.</td> <td>6.75</td> <td></td> <td>A(13-C) = 5.7, A(35-C1) = 0.6; $CC1_4 + UV$</td> <td>85CH01,82SY01</td>	'COCI	CCI.	6.75		A(13-C) = 5.7, A(35-C1) = 0.6; $CC1_4 + UV$	85CH01,82SY01
CH2COO- W(9,1) 16.0 8.5(2) Gly + porphyrin + light 84M001 CH2COO- W 16.0 8.6(2) dye photosensitization with malonic 85CA01 acid acid acid acid acid 85CA01 Acyl radical CH2-COO- W 16.8 12.2(2) $A_{H} = 0.65(2)$, dye, light and succinic 85CA01 Acyl radical CH2-CI2 7.85 trioxolane + PBN, -60°C 81PR02 Acyl radical 2-MP 7.7 ozonation of 2-MP 83PR02 'CH2-COO-' W 16.6 13.1(2) $A_{H} = 0.5(2)$, 2-chloroethanol + 84M001 'CH2-COO-' W 16.7 12.1(2) $A_{H} = 0.65(2)$, dye light and glutaric 85CA01 'CH2-COO-' W 16.7 12.1(2) $A_{H} = 0.65(2)$, dye light and glutaric 85CA01 'CH3-CH3-COO-' W 16.7 10.3(2) $A_{H} = 0.60(2)$, dye + light and seba- 85CA01 'CH3-CH3-COO-' W 16.8 11.7(2) dye photosensitization with adipic acid 85CA01 'CH3-CH3-COO-' W 16.8 11.7(2) dye photosensiti	'COCI	CHCl ₁	6.7		dichromate + UV	82RE01
'CH2COO-W16.08.6(2)dye photosensitization with malonic85CA01'CH2CH2COO-W16.812.2(2) $A_{H} = 0.65(2)$, dye, light and succinic85CA01Acyl radicalCH2L27.85trioxolane + PBN, -60°C81PR02Acyl radical2-MP7.7ozonation of 2-MP83PR02'CH2CH2OHW16.613.1(2) $A_{H} = 0.5(2)$, 2-chloroethanol +84MO01'CH2CH2OHW16.08.5(2)Gly + porphyrin + light84MO01'CH2CH2COO-'W16.712.1(2) $A_{H} = 0.65(2)$, dye light and glutaric85CA01'CH2CH3CH3COO-'W16.710.3(2) $A_{H} = 0.60(2)$, dye + light and seba-85CA01'CH2CH3CH3COO-'W16.811.7(2)dye photosensitization with adipic acid85CA01'CH2(CH3),-COO-'W16.811.7(2)dye photosensitization with adipic acid85CA01'CH2(CH4)(COOH)(COOH)CH3COO-'W15.01.9 $A_{H} = 0.60$, dye + light and tartaric85CA01'CH(OH)(CH(OH))COO''W15.61.8dyc + light and malic acid85CA01	'CH2COO-	W(9.1)	16.0	8.5(2)	Gly + porphyrin + light	84MO01
'CH ₂ CH ₂ COO' W 16.8 12.2(2) $A_{H} = 0.65(2)$, dye, light and succinic 85CA01 Acyl radical CH ₂ Cl ₂ 7.85 trioxolane + PBN, -60°C 81PR02 Acyl radical 2-MP 7.7 ozonation of 2-MP 83PR02 'CH ₂ CH ₂ OH W 16.6 13.1(2) $A_{H} = 0.5(2)$, 2-chloroethanol + 84MO01 'CH ₂ CH ₂ OH W 16.0 8.5(2) Gly + porphyrin + light 84MO01 'CH ₂ CH ₂ CH ₂ COO' W 16.7 12.1(2) $A_{H} = 0.65(2)$, dye light and glutaric 85CA01 'CH ₂ CH ₂ CH ₂ COO' W 16.7 10.3(2) $A_{H} = 0.60(2)$, dye + light and seba- 85CA01 '' id 16.7 10.3(2) $A_{H} = 0.60(2)$, dye + light and seba- 85CA01 'CH ₂ (CH ₂) ₂ COO' W 16.8 11.7(2) dye photosensitization with adipic acid 85CA01 'CH ₂ (COO'' W 16.1 11.7(2) dye photosensitization with citic acid 85CA01 'CH ₂ (COO'' W 15.0 1.9 $A_{H} = 0.60$, dye + light and tartaric 85CA01 'CH ₂ (COO'' W 15.6	'CH ₂ COO-	W	!6 .0	8.6(2)	dye photosensitization with malonic acid	85CA01
Acyl radical CH_3Cl_2 7.85trioxolane + PBN, -60°C81PR02Acyl radical2-MP7.7ozonation of 2-MP83PR02'CH_2CH_3OHW16.613.1(2) $A_M = 0.5(2), 2-chloroethanol +$ 84MO01'CH_2COO'W16.08.5(2)Gly + porphyrin + light84MO01'CH_2CH_3CH_2COO'W16.712.1(2) $A_M = 0.65(2), dye$ light and glutaric85CA01'CH_2CH_3CH_2COO'W16.710.3(2) $A_M = 0.60(2), dye + light$ and seba- cic acid85CA01'CH_2CH_3CH_2COO'W16.811.7(2)dye photosensitization with adipic acid85CA01'CH_2C(OH)(COOH)CH_2COO''W16.111.7(2)dye photosensitization with citric acid85CA01'CH(OH)(CH(OH))COO''W15.01.9 $A_H = 0.60, dye + light$ and tartaric85CA01'CH(OH)CH_2COO''W15.61.8dyc + light and malic acid85CA01	·CH ₂ CH ₂ —COO-	W	16.8	12.2(2)	$A_{\rm H} = 0.65(2)$, dye, light and succinic acid	85CA01
Acyl radical2-MP7.7ozonation of 2-MP83PR02'CH2CH2OHW16.613.1(2) $A_{H} = 0.5(2), 2-chloroethanol +$ 84MO01'CH2-COO'W16.08.5(2)Gly + porphyrin + light84MO01'CH2CH2CH2CH2-COO'W16.712.1(2) $A_{H} = 0.65(2), dye light and glutaric85CA01'CH2CH2CH2CH2-COO'W16.710.3(2)A_{H} = 0.60(2), dye + light and seba-cic acid85CA01'CH2CH2CH2COO'W16.811.7(2)dye photosensitization with adipic acid85CA01'CH2C(CH2)_D-COO''W16.111.7(2)dye photosensitization with adipic acid85CA01'CH2C(OH)(COOH)CH2COO''W15.01.9A_{H} = 0.60, dye + light and tartaric85CA01'CH(OH)(CH(OH))COO''W15.61.8dyc + light and malic acid85CA01$	Acyl radical	CH ₂ Cl ₂	7.85		trioxolane + PBN, -60°C	81PR02
$C\dot{H}_2CH_2OH$ W 16.6 13.1(2) $A_{H} = 0.5(2), 2-chloroethanol + porphyrin + light 84MO01 CH_2-COO^- W 16.0 8.5(2) Gly + porphyrin + light 84MO01 CH_2CH_2CH_2-COO^- W 16.7 12.1(2) A_{H} = 0.65(2), dye light and glutaric 85CA01 .CH_2CH_2CH_2COO^- W 16.7 10.3(2) A_{H} = 0.60(2), dye + light and seba-cic acid 85CA01 .CH_2CH_2CH_2COO^- W 16.8 11.7(2) dye photosensitization with adipic acid 85CA01 .CH_2C(OH)(COOH)CH_2COO^- W 16.1 11.7(2) dye photosensitization with citric acid 85CA01 .CH(OH)(CH(OH))COO^- W 15.0 1.9 A_{H} = 0.60, dye + light and tartaric 85CA01 .CH(OH)CH_3COO^- W 15.6 1.8 dyc + light and malic acid 85CA01 $	Acvl radical	2-MP	7.7		ozonation of 2-MP	83PR02
CH2-COO ⁻ W 16.0 8.5(2) Gly + porphyrin + light 84M001 CH2CH2CH2CH2-COO ⁻ W 16.7 12.1(2) $A_{H} = 0.65(2)$, dye light and glutaric 85CA01 CH2CH2CH2COO ⁻ W 16.7 10.3(2) $A_{H} = 0.60(2)$, dye + light and seba- 85CA01 CH2CH2CH2COO ⁻ W 16.8 11.7(2) dye photosensitization with adipic acid 85CA01 CH2CH2CH2COO ⁻ W 16.8 11.7(2) dye photosensitization with adipic acid 85CA01 CH2CH2CH2COO ⁻ W 16.1 11.7(2) dye photosensitization with adipic acid 85CA01 CH2CH2CH2COO ⁻ W 16.1 11.7(2) dye photosensitization with adipic acid 85CA01 CH2CH2CH2COO ⁻ W 16.1 11.7(2) dye photosensitization with adipic acid 85CA01 CH3C(OH)(CH0H)(COO ⁻ W 15.0 1.9 $A_{H} = 0.60$, dye + light and tartaric 85CA01 CH(OH)CH3COO ⁻ W 15.6 1.8 dyc + light and malic acid 85CA01	CH2CH2OH	W	16.6	13.1(2)	$A_{\rm H} = 0.5(2), 2$ -chloroethanol +	84MO01
CH2CH2CH2-COO-W16.712.1(2) $A_{\rm H} = 0.65(2)$, dye light and glutaric85CA01'CH2CH2CH2COO-W16.710.3(2) $A_{\rm H} = 0.60(2)$, dye + light and seba- cic acid85CA01'CH2CH2CH2COO-W16.811.7(2)dye photosensitization with adipic acid85CA01'CH2C(CH2)2COO-W16.111.7(2)dye photosensitization with adipic acid85CA01'CH2C(OH)(COOH)CH2COO-W16.111.7(2)dye photosensitization with citric acid85CA01'CH(OH)(CH(OH))COO-W15.01.9 $A_{\rm H} = 0.60$, dye + light and tartaric85CA01'CH(OH)CH2COO-W15.61.8dyc + light and malic acid85CA01	-000-	W	16.0	8.5(2)	Glv + porphyrin + light	84MO01
$CH_1CH_2COO^-$ W16.710.3(2) $A_{H} = 0.60(2)$, dye + light and seba- cic acid85CA01 $CH_2(CH_2)_2-COO^-$ W16.811.7(2)dye photosensitization with adipic acid dye photosensitization with citric acid 85CA0185CA01 $CH_2C(OH)(COOH)CH_2COO^-$ W16.111.7(2)dye photosensitization with citric acid acid85CA01 $CH(OH)(CH(OH))COO^-$ W15.01.9 $A_{H} = 0.60$, dye + light and tartaric 	·CH1CH1CH2COO-	Ŵ	16.7	12.1(2)	$A_{\rm H} = 0.65(2)$, dye light and glutaric acid	85CA01
'CH ₂ (CH ₂) ₂ COO ⁻ W16.811.7(2)dye photosensitization with adipic acid85CA01'CH ₂ (COH)(COOH)CH ₂ COO ⁻ W16.111.7(2)dye photosensitization with citric acid85CA01'CH(OH)(CH(OH))COO ⁻ W15.01.9 $A_{\rm H} = 0.60$, dye + light and tartaric85CA01'CH(OH)CH ₂ COO ⁻ W15.61.8dye + light and malic acid85CA01	·CH ₂ CH ₂ CH ₂ COO-	W	16.7	10.3(2)	$A_{\rm H} = 0.60(2)$, dye + light and seba- cic acid	85CA01
'CH ₂ C(OH)(COOH)CH ₂ COO ⁻ W16.111.7(2)dye photosensitization with citric acid85CA01'CH(OH)(CH(OH))COO ⁻ W15.01.9 $A_{\rm H}$ = 0.60, dye + light and tartaric85CA01'CH(OH)CH ₂ COO ⁻ W15.61.8dye + light and malic acid85CA01	·CH.(CH.)COO-	w	16.8	11.7(2)	dve photosensitization with adipic acid	85CA01
'CH(OH)(CH(OH))COO'W15.01.9 $A_{\rm H} = 0.60$, dye + light and tartaric85CA01'CH(OH)CH_2COO'W15.61.8dye + light and malic acid85CA01	-CH,C(OH)(COOH)CH,COO-	W	16.1	11.7(2)	dye photosensitization with citric acid	85CA01
CH(OH)CH ₂ COO ⁻ W 15.6 1.8 dyc + light and malic acid 85CA01	·CH(OH)(CH(OH))COO	W	15.0	1.9	$A_{\rm H} = 0.60$, dye + light and tartaric acid	85CA01
,	·CH(OH)CH2COO-	W	15.6	1.8	dyc + light and malic acid	85CA01

Table 3* (Continued). MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)†

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
·CH2CH(OH)COO-	w	16.3	11.7(2)	$A_{\rm H} = 0.75$, dye + light and malic	85CA01
°CH ₂ (CH ₂) ₂ COOH	CHCI,	15.1	9.9(2)	$A_{\rm H} = 0.5(2)$, decomposition of (HO C(CH) COO)	79GA01
CH ₃ SCH ₂ CH ₂ C'H(NH ₃ *)	W(2.5-4.5)	14.55	1.45	$A_{\rm N} = 2.90, A_{\rm H} = 0.35(2),$ methionine	83DA01
CH3SCH2CH2C'H(NH2)	₩(>4.5)	16.0	1.4	$A_{\rm N} = 1.4, A_{\rm H} = 0.65(2)$, methionine + 'OH	83DA01
·CH2CH(NH3+)COO-	W(P5.0)	16.3	16.7,10.9	$A_{\rm H} = 0.45$; cysteine sulfinic acid + HRP/H.O.	84HA02
CH,CH(NH,*)COO-	W(P7.5)	15.9	16.1	$A_{\rm H} = 10.5$, cysteinyl dona + UV	86PI02
·CH2CH(NH3)COO-	₩	16.3	13.70(2)	DL-alpha-alanine + CPZ and UV light	82L103
$CH_2C(CH_1)_2N(OH)N=0$	W(11.5)	16.2	10.1(2)	gamma-radiolysis of MNP	80MA05,79MA02
$CH_{1}C(CH_{1})_{2}N(OH)N=0$ $CH_{2}C(CH_{1})_{3}N=0$ or	W(4.5)	16.2	11.4(2)	gamma-radiolysis of MNP	80MA05,79MA02
$CH_{1}C(CH_{1})N(O)=N(O)-I-Bu$	W(11.5)	16.6	11.1(2)	gamma-radiolysis of MNP	80MA05,79MA02
indole-3-C'H ₂	W(Ac4.6)	17.1	10.9(2)	indole-3-acetic acid + HRP + H_2O_2	86MO04
Indole-3-C'D ₂	W(Ac4.6)	17.1		$A_{\rm D} = 0.6(2)$, indole-3-acetic acid + HRP + H ₂ O ₂	86MO04
Phenyl	Benzene	12.3	1.97(3)	$A_{\rm H} = 0.87(2)$; benzoyl peroxide	78ZU01
Phenyl	Benzene	12.45	1.80(3)	$A_{\rm H} = 0.87(2)$; benzoyl peroxide	82BE01
C'H'CH'.	Toluene	14.25	7.25(2)	di-tert-butylperoxyoxalate	70PE01
Benzyl	Benzene	15.0	7.5(2)	toluene + tert-BuO'	80NI01
Benzyl	W	16.63	10.56	1,3-diphenyl-3-propane + UV	85RO05
Benzyl	McOH	15.80	8.50	1,3-diphenyl-3-propane + UV	85RO05
Benzyl	AcN	15.23	8.53	1.3-diphenyl-3-propane + UV	85RO05
Benzvi	Benzene	15.00	7.50	1.3-diphenyl-3-propane + UV	85RO05
a-Hvdoxvbenzvl§	W(TAR3.0)	15.4	2.6	A(13-C) = 4.5, DMHB + ligninase	85HA03
C.H.C.(OH)(CH.)	W(TAR3.0)	15.6	2.1	A(13-C) = 4.5, DMHB + ligninase	85HA03
x-Phenvicthy!	Benzene	14.8	3.8	ethylbenzene + tert-BuO'	80NI01
Styrene ('C-7)	W(P7.6)	16.	3.7	styrene/HRP/GSH/H ₂ O ₂	86ST01
Styrene ('C-7)	W(P7.6)	16.		$A_{\rm D} = 0.6$, deuterated styrenc/HRP/ GSH/H ₂ O ₂	86ST01
Cumvi	Benzene	15.5		cumene + tert-BuO'	80NI01
Benzovi	McOH	8.1		phenvlbenzoate + UV	82RO05
Benzovi	AcN	8.1		phenvibenzoate + UV	82RO05
Benzovi	Benzene	8.0		phenvlbenzoate + UV	82RO05
Benzovl	Dioxane .	8.0		phenylbenzoate + UV	82RO05
CH'C(CH')'C.H'	Benzene	15.0	8.65(2)	tert-butylbenzene + tert-BuO'	80NI01
CH ₂ C ₂ H ₂ NO ₂	W(TR7.4)	17.1	14.4(2)	o-nitrobenzyl + microsomal protein	86MO01
CH.C.H.NO.	W(TR7.4)	16.5	10.6(2)	p-nitrobenzyl + microsomal protein	86MO01
CH.C.H.SO.N(CI)Na	W(8.5.11)	16.75	10.38(2)	chloramine-T + light	85EV03
C.H.C.H.	W(B10)	15.5	6.0(2)	procarbazine + HRP	845102
P. cromazyl	W(3.5-6.5)	14.1	1.99(2)	$A_{\rm H} = 0.92(1)$; CPZ + 330 nm light	85CH02
) nomazyi	W(4.0)	14.1	1.99	$A_{\mu} = 1.95 \ 0.95$ CPZ + 11V light	85MO01
C ₁ H ₃ N(CH ₃)C ⁻ H ₂	Benzene	14.4	7.6(2)	$A_N = 3.1$, benzoyl peroxide + di- methyl aniline	75SA01
CH.CO.CH.C.H(C.H.)	Styrene	14.5	3.1	benzovi peroxide + dimethyl aniline	75SA01
СН.(СН.)СН.	Benzene	14.8	10.0	laurovineroxide + dimethyl aniline	75SA01
C,H ₃ N(C ₃ H ₃)C'HCH ₃	Benzene	14.4	4.8	$A_{\rm N} = 4.8$, benzoyl peroxide and N.N-diethylaniline	75SA01
C.H.SO.NH,	₩(4.0)	13.81	1.95(2)	$A_{\mu} = 0.96(2)$, sulfanilamide + 11V	80CH03
C.H.COOH	₩(4.0)	13.65	1.95(2)	$A_{\rm H} = 0.97(2)$, 4-aminobenzoic acid +	80CH01
C ₄ H ₄ NO ₂	₩(4.0)	12.73	2.11(2), 1.01(2)	$A_N = 0.48$, 4-nitrobenzenesulfonamide + UV	80CH03
Iracily) at CS	W(10-12)	16.30		gamma irradiation of 5-bromouracil	82HE01
Jracilyl at CS	W(P7.0)	15.70	2.4	air-free, adriamycin + light	85CA02
Jracilyl at C5	W(P7.0)	15.2	2.3	adriamycin + light	85CA02
Jracilyl at C6	W(P7.0)	15.1	0.8	$A_{\rm N} = 3.5$, adriamycin + light	85CA02
Jracilyl at C6	W(P7.0)	15.2	1.5	$A_{\rm N} = 3.4$, adriamycin + light	85CA02
.3-Dimethyl uracil C6	W(P7.0)	15.0	2.15	$A_{\rm N} = 2.15$, adriamycin + light	85CA02
vtosine at C5	W(P7.0)	15.75	2.8	adriamycin + light	85CA02
hymine at C5	W(P7.0)	16.70		adriamycin + light	85CA02
	W(P7.0)	15.15		$A_{\rm N} = 3.40$, adriamycin + light	85CA02
hymine at N1 or N3					
hymine at N1 or N3	W(P7.0)	14.3		$A_{\rm H} = 3.0$, radiolysis of uridine-5'-	76KO01

Table 3* (Continued). MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)†

Adduct	Solvent	A _N /G	A _{II} /G	Other, [g-valuc], Source	Reference(s)
Uridinyl-5'-monophosphate ('C6)	W(P7.0)	14.9	4.8	$A_{\rm H} = 1.6$, radiolysis of uridine-5'- monophosphate	76KO01
NH - C = 0 - NH - C = 0 - C	H W(9.5)	15.3	3.0	hydantin + gamma radiation	83MA03
$N = C(-0^{-}) - N = C(OH) - C'H$	W(11.9)	15.2	3.0.0.9	hydantin + gamma radiation	83MA03
Gly-Gly' (-COOH)t	D.O	16.15	9.9(2)	$A_{\rm H} = 2.7, 210-230 \text{ nm UV}$	80L101
Gly-Gly' (COOH)t	Ŵ	16.2	9.9(2)	$A_{\rm H} = 2.70$, dve photosensitization	85CA01
Ala-Gly' (COOH)‡	W(P7.0)	16.05	9.90	$A_{\rm N} = 2.70$, adriamycin + light	85CA02
Ala-Gly' (COOH)‡	W/DMSO 4:1	16.0	9.8(2)	$A_{\rm N} = 2.75$, photolysis of aminoqui-	85CA03
Gly-Gly-Gly' (-COOH)t	W	16.2	9,19(2)	$A_{\rm w} = 2.70$, dvc photosensitization	85CA01
Gly-Glu' (COOH)‡	D,0	15.7	1.7	$A_{\rm N} = 2.4, 210-230 \text{ nm UV}$	80L101
Gly-Asp' (COOH)‡	D ₂ O	15.6	1.8	$A_{\rm N} = 2.6, 210-230 \ \rm nm \ UV$	80L101
Ala-Asp' (COOH)‡	Ŵ	15.6	1.70	$A_{\rm N} = 2.80$, dye photosensitization	85CA01
Gly-Ile (COOH)‡	D ₂ O	15.8	1.0	$A_{\rm N} = 2.8, 210-230 \ {\rm nm} \ {\rm UV}$	80L101
Gly-Ala' (COOH)‡	D_2O	16.0	2,18	$A_{\rm N} = 2.18, 210-230 \rm nm UV$	80L101
Gly-Ala' (COOH)‡	W	16.0	2.16	$A_{\rm N} = 2.18$, dye photosensitization	85CA01
Gly-Ala' (COOH)‡	W(P7.0)	15.95	2.15	$A_N = 2.15$, adriamycin + light	85CA02
Ala-Ala' (COOH)‡	W/DMSO 4:1	15.9	2.2	$A_{\rm N} = 2.2$, photolysis of aminoquinone drugs	85CA03
Asp-Ala' (COOH)‡	W(P7.0)	15.95	2.15	$A_{\rm N} = 2.15$, adriamycin + light	85CA02
Asp-Ala' (COOH)‡	W/DMSO 4:1	15.9	2.2	$A_N = 2.2$, photolysis of aminoquinone	85CA03
•				drugs	
Glu-Ala' (COOH)‡	W	16.0	2.20	$A_{\rm N} = 2.20$, dyc photosensitization	85CA01
Asp-Ala' (COOH)‡	W	16.0	2.20	$A_{\rm N} = 2.20$, dye photosensitization	85CA01
Gly-Gly-Ala' (COOH)‡	W(P7.0)	,16.00	2.20	$A_{\rm N} = 2.20$. adriamycin + light	85CA02
Gly-Val' (COOH)‡	W	15.8	1.00	$A_N = 2.45$, dye photosensitization	85CA01
Gly-Val' (COOH)‡	W(P7.0)	15.75	1.10	$A_{\rm N} = 2.80$, adriamycin + light	85CA02
Gly-Val' (-COOH)‡	W/DMSO 4:1	15.6	1.2	$A_N \approx 2.9$, photolysis of aminoquinone drugs	85CA03
Gly-Gly-Val' (COOH)‡	W(P7.0)	15.75	1.10	$A_{\rm N} = 2.80$, adriamycin + light	85CA02
Ala-His' (COOH)‡	W	15.6	1.26	$A_N = 2.70$, dye photosensitization	85CA01
Ala-His' (COOH)‡	W(P7.0)	15.60	1.26	$A_{\rm N} = 2.70$, adriamycin + light	85CA02
Gly-Tyr' (COOH)‡	W	15.7	1.25	$A_{\rm N} = 2.70$, dye photosensitization	85CA01
Gly-Tyr' (COOH)‡	W(P7.0)	15.70	1.25	$A_{\rm N} = 2.70$, adriamycin + light	85CA02
Ala-Ser' (COOH)‡	W	15.6	1.58	$A_{\rm N} = 2.75$, dye photosensitization	85CA01
Ala-Ser' (COOH)‡	W(P7.0)	15.60	1.58	$A_N = 2.75$, adriamycin + light	85CA02
Ala-Thr' (COOH)‡	W	15.6	1.26	$A_{\rm N} = 2.80$, dye photosensitization	85CA01
Gly-Gly-Arg (COOH)‡	W(P7.0)	15.70	1.70	$A_N = 2.75$, adriamycin + light	85CA02
Phe-Asp-Ala-Ser-Val' (COOH)‡	W(P7.0)	15.75		$A_{\rm N} = 2.80$, admamycin + light	85CA02
Lipid radical or CCI ₃ 00	W(TR7.4)	15.0		CCI, and microsomes	/8IN01
Allylic L	rrcon-11	15.2	1.8	ozone + metnyi linoleate, -40°C	BIPKUL
Methyl linoleate-C	Freon-11	15.2	1.8	[2.0000] ozone + metnyi jinojeate	81PKU3
Lipio radicals		13.	1.6	microsomes + CCl ₄	82ALUI
Linoleic-C (9 or 13)	W/EQN 1:1	13.9	1.5	gamma irradiated indicic acid	81 LAVI 93 41 01
	W(C0.0)	13.3	2.1	linoletic acid + lipoxygenase	82ALUI 93ALUI
Choicenc-C	*(C7.0) THE	13.7	2.0	A = 0.50 + 0.39 autoridizing ligide	84EV01
		14.77	1.72	290 K	046 101
Linoleate radical	IHF	14.75	1.75	$A_{\rm H} = 0.52, 0.39,$ autoxidizing lipids 290 K	84EV01
Linolenate radical	THF	14.75	1.75	$A_{\rm H} = 0.56, 0.35, $ autoxidizing lipids 290 K	84EV01
Oleate (C')**	THF	14.77	1.60	$A_{\rm H} = 0.53, 0.39, 0.1;$ oleate autoxida- tion, 220 K	84EV01
Linoleate (C')**	THF	14.75	1.53	$A_{\rm H} = 0.584, 0.548, 0.36, 0.24, 0.09;$ autoxidation, 220 K	84EV01
Linolenate (C')**	THF	14.75	1.49	$A_{\rm H} = 1.25, 0.587, 0.374, 0.08;$ autox- idation, 220 K	84EV01
Linoleate (C' at 13)**	THF	+ 14.75	+ 1.53 (H13)	A(H12, H14, H11, H10, Ht-Bu) = -0.58, -0.55, +0.36, -0.24, -0.09 respectively, 220 K	85EV01
Linoleate (C' at 12)**	THF	+ 14.75	1.38 (H12)	A(H13, H11, H14, H10, Ht-Bu) = -0.57, -0.54, +0.36, +0.24, -0.09, respectively, 220 K	85EV01
15-HPETE ('C-11)	W(P7.8)	15.0	2.25	15-HPETE + RSVM or hematin	86SC01
15-HPETE ('C-13)	W(P7.8)	13.5	2.35	15-HPETE + RSVM or hematin	86SC01
AA ('C-11)	W(TR7.5)	15.7	2.5	RSV microsomes + AA	80MA01
•					

Table 3* (Continued). MNP Spin Adduct Parameters (Also referred to as t-NB and NtB)†

Adduct	Solvent	· A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
AA (chemical)	W(TR9.0)/EtOH	15.5	2.0	nonradical addition of AA to MNP	80MA01
AAC'	W(C9.0)	14.4	2.75	arachidonic acid + lipoxygenase	82AL01
AA ('C-11 or 'C-15)	W(P7.8)	15.6	2.3	RSVM + AA	86SC02
AA deuterated "	W(P7 8)	15.6	2.5	RSVM + AA	86SA02
A A unidentified C'	W(107.9)	15.0			865002
A undennied C	W(F7.0)	10.9			820001
2-Azidoprop-2-yi	Genzene	15.2		$a_N = 1.70, [2.0059]$ isopropyi- szide + TBHN	630001
a-Azidobenzyl	Benzene	14.3	1.85	$A_N = 2.35$, [2.0061] benzyl azide + TBHN	83CO01
'OH then $+ e^{-}$	W	28.0	4.4	radiolysis of water	76SA01
OH (? see 79KA01)	W(P7.4)	14.4	14.4	Fenton system	79LA03
n-BuO'	Benzene	28.4	1.3	tributyltin chromate	81RE01
tezt-BuO'	Renzene	26.6		$(1 \sigma r_1 - R_1) \cap \cdots \cap O \cap O_1$	70PE01
test BuO'	Toluono	37 3		tart ButulOOC(0)C(0) taut Butul	770401
tert BuO'	Democra	21.2			
ieri-BuO	Benzene	20.8		reri-Butylooc(O)C(O)-reri-Butyl	SUNIVI
Alkoxyl radical	2-MP	29.2	1.1(2)	ozonation of 2-MP	83PR02
tert-Butylperoxy["O]	Toluene	28.7		A(17-O) = 4.6, from 2-propyl-t-butyl trioxide	77HO01
or isopropylperoxy["O]	Toluene	28.7		A(17-O) = 4.6, from 2-propyl-1- butyl trioxide	77HO01
CliCOO.	CCL	27.0		gamma irradiation	82SY01
Cysteinyl	W(P7.6)	18.4		[2.0065] cysteine + hematoporphyrin + light	83FE01
GS'	W(P7.6)	18.3	•	[2.0065] GSH + hematophorphyrin + light	83FE01
GS'	W(P7.6)	18.5		styrenc + PHS + GSH + H ₂ O ₂	86ST01
SO, T	W(P7.5)	14.8		cysteine sulfinic acid + HRP/H ₂ O ₂	84HA02
SO. [†]	W(8.5)	14 87		chloramine-T and light or dithionite	85EV03
SO. 7	W	14.76		PRN + perovydisulfate + 11V	849504
	W/A D	17.70		12 0055) hereiteulfeneuride is 11V	800007
	W(4.0)	13.9		[2.0055] benzyisuironamide + UV	865103
	W(8.5)	14.01		chioramine-1 + light	83EVU3
CH ₃ C ₆ H ₄ SO ₂	.W(8.5)	13.12		chloramine-T + light	85EV03
H ₂ NC ₆ H ₄ SO ₂	W(4.0)	13.3		[2.0056] sulfacetamide + UV	80CH03
SO2CH2CH(NH2)COO-	W(P7.5)	12.7		cysteine sulfinic acid + HRP/H ₂ O ₂	84HA02
p-XC ₆ H ₄ S [*]	Benzene	17.03-		photolysis of corresponding disulfide	831TO1
		18.18			
$X = Br. Cl. H. tert-butyl. CH_1$	OCH ₁ , NH ₂ in the of	rder of increasin	a A.1		
'AsO ₂	W	14.1		$A(As, 1 = 3/2) = 7.72, SO_4^{-} + AsO_2^{-}$	84RE01
DTBN [see also (CH ₃) ₃ C [•]]					
DTBN	Benzene	15.2		from MNP	70PE01
DTBN	Benzene	15.2		tert-butyl radical from decomposition	758A01
DTBN	Toluene	15.7		[2.0063], di- <i>tert</i> -butyl ketone + UV, 183 K	77HO01
DTBN	w	17.0		MNP proflavine + 440 pm light	781 101
DTBN	Ŵ	not a	iven	IIV and comma-radialusis	181MA01
nten		16.7		O A BIR REIHING-LEVICIASIS	010000
		10.7			011AUL
DIDN .	BENZERE	15.4		[2.0001], isopropylazide + TBHN	830001
DTBN	W/MeOH 1:1	16.3		[2.0055] photodecomposition of bleomycia	85AN01
DTBN	W(8.5)	17.16		[2.0055] chloramine-T + light	85EV03
DTBN	W(P7.8)	17.1		RSVM + AA	86SC02

*There are many spin trapping studies on the free radicals generated by gamma-itradiation and UV photolysis of nucleic acids and their constituents, amino acids and peptides. These detailed studies demonstrate and identify the many radicals generated in these systems. Thus, the original papers must be consulted. Only a small sampling of these radical adducts of MNP are included here. The original work in this area can be found in references: 76JO01, 76KO01, 77RU01, 77RU02, 78JO01, 78JO02, 78RU01, 78RU02, 78RU03, 78RU04, 78RU05, 78RU06, 78RU07, 79MA01, 79MA02, 79MA03, 79RI01, 80LI01, 80MA03, 80MA04, 80MA05, 80MA05, 80MI01, 80MI02, 80MO01, 81KU01, 81KU02, 81KU03, 81L101, 81R003, 81R004, 81M001, 81M002, 81SU01, 82ET01, 82L102, 82L103, 82MA03, 82MA04, 82M002, 82M003, 82M004, 82R101, 82RC04, 82SP01, 83LI01, 83MA03, 83MA04, 84IG01, 84MA02, 84MO05, 84MO06, 85CA01, 85MA02, 86KU01.

†Reference %1MA01 provides a good deal of information on the chemistry of MNP which might interfere in spin trapping experiments. See also 80MA07.

‡(--COOH) represents decarboxylation of the amino acid.

** These entries represent hyperfine coupling constants derived from the use of ENDOR to study the spin adducts of autoxidizing fatty acids. Here H10 implies the coupling from the proton(s) on carbon 10 of the fatty acids, etc.

SNote that this is the same as the 'OH adduct of PBN.

Adduct	Solvent	A _N /G	<u>А</u> _н /G	Other, [g-value], Source	Reference(s)
н.	w	16.6	10.25(2)	TiO + light with McOH	82AU01
Н.	W .	16.2	10.2(2)	ultrusound in water	85R101, 82MA01
Н.	W	16.2	10.2(2)	ultrasound in water	85RI01, 83MA01
Н.	₩(6.7)	16.2	10.2(2)	gamma-irradiation of water, kinetics given	84CA01
D'	D ₂ O	16.2	10.2	$A_{\rm D} = 1.5$, ultrasound in D ₂ O	85RI01, 83MA01
'CH ₃	W(7)	15.83	2.16	[2.0059] cobaltoxime photolysis	82MA06
'CH ₃	W(P7.4)	16.12	2.77	$HRP/H_2O_2 + 1_2$ -dimethylhydrazine	85AU01
	W(P/.4)	16,0	2.7	microsomes + 1,2-dimethylhydrazine	85AU01
CH2	W(P7.4) Benzene	14.76	2.72	microsomes + 1,2-dimethylnydrazine, extract	85AUUI
СП3 -СИ	Benzene	14.70	2.55	$m_{r}/m_{2}O_{2} \neq 1,2$ -dimethylhydrazine	95 41101
'CH.	W/DMSO 19-1	15 2	2.55	diazionone + DMSO + linht	85MO02
.CH'	W(P7 8)	16 33	2.61	nrimanuinc + NADH + DMSO	864101
CH,	W and Cells	15.9	2.65	radiolytic generation with DMSO	86SA01
CH,OH	C/M 2:1	14.78	3.56	Fenton system with McOH	86AL02
CH2CH	W(P7.4)	15.78	2.73	DDEP + microsomes (P-450) or Cu(11)	82AU02
CH,CH,	Benzene	14.43	2.50	DDEP + Cu(II)	82AU02
CH1CH1OH	W(7)	15.75	2.75	[2.0044] cobaltoxime complex photolysis	82MA06
CH ³ C.HOH	W(P7.4)	15.56	2.59	$H_2O_2 + UV$ with EtOH	82F101
CH ³ C.HOH	W(P7.4)	15.60	2.65	decomposition of 4-POBN-OOH with EtOH	82FI01
СН,С'НОН	W	15.5	2.6	ultrasound in water	85R101, 83MA01
CH ₃ C'HOH	C/M 2:1	14.97	. 3.48	liver microsomes + EtOH	86AL01
(PC)CH ₃ C'HOH	C/M 2:1	not	given	but shown, liver microsomes + labeled EtOH	86AL01
	C/M 2:1	14.97	3.48	liver microsomes + EIUH	86ALU2
	C/M 2:1	14.97	3.50	A(12 C) = not siver showing mission	50ALU2 86AL02
CHCHCHCH	W(D7 8)	14.97	3.47	A(13-C) = not given spectra snown; microsomes	86A1101
(CH) C OH	W(PI10)	15.50	2.50	Facility TTPS + LIV with 2. Deale	845401
(CH),C'OH	C/M 2·1	14.98	2.67	microsomes + 2-PrOH	86AL02
(CH ¹) ¹ C.OH	C/M 2:1	15.13	2.92	Fonton reaction + 2-PrOH	86AL02
2-Phenylethyl	W(P7.4)	15.73	2.75	[2.006] plienclzine + microsomes or Cu(11)	83OR01
2-Phenylethyl	Benzene	14.41	2.68	phenelzine + Cu(11)	83OR01
Phenylethyl	W(P8.0)	not	given	phenylethylhydrazine and oxyhemoglobin	84AU01
2-BuOH (C')	C/M 2:1	15.10	2.56	microsomes + 2-BuOH	86AL02
2-BuOH (C')	C/M 2:1	15.18	2.64	Fenton reaction + 2-BuOH	86AL02
CO ¹	W	15.6	3.4	TiO + light with formate	82AU01
CO ₂ [†]	W(B9.0)	15.8	3.4	formate + M. formicicum	83BA01
	W	15.5	3.0	ultrasound in water	85RJ01, 83MA01
CO ₂ *	W(6.7)	13.6	3.4	gamma-irradiation of water, kinetics given	84CA01
	W(PII.0)	13.3	3.0	re(III)-IPPS + light with tormate	84FAU1
·CCI	W/DM30 19:1	13.5	3.0	$CC_1 + UV$ then extended to water	62MOU2 92ROO1
	W(P7 4)	15 7	25	$CC_4 \neq CV$, then extracted to water microsomes ± 12 -dimethylbudrazine	85 A 1 10 1
Linoleate-C'	W(B9.0)	15.8	2.56	linoxygenase + linoleate	860002
Lipodienvl-type	C/M 2:1	14.84	2.87	hepatocytes + FeSO.	862001
Lipodienyl-type	C/M 2:1	14.80	2.90	hepatocytes + ADP-FeCl	86PO01
CH ₂ C ₄ H ₂ SO ₂ N ² (H)	W(5)	15.00	2.25	$A_N = 2.25$, chloramine-T in acid	85EV02
Unidentified	W	15.6	2.6	1% H ₂ O ₂ + UV light	78JA01
N,'	W	14.8	2.0	$A_{\rm N} = 2.0$, methylene blue + light with azide	82HA02
N,'	AcN	13.87	1.43	$A_N = 2.09$, electrochemical	82WA02
.OH	W(2-10)	14.97	1.68	$A_{\rm H} = 0.34$, 1% H,O ₂ + UV light, mean for A's	78JA01
'OH	W(2-6)	14.97	1.68	$A_{\rm H} = 0.36, 0.05 {\rm M} {\rm Na}_{\rm s} {\rm S}_{\rm s} {\rm O}_{\rm s}$	78JA01
.OH	W	14.96	1.68	$FeCl_3 + ADP + H_2O_2$	78JA01 ·
.OH	W(P7.8)	14.93	1.69	$H_2O_2 + UV$ light	79F101
.OH	W	14.95	1.68	$A_{\rm H} = 0.33$, TiO + light	82AU01
ЮН	W(P7.4)	14.93	1.69	$H_2O_2 + UV$	82F101
UH	Benzene	14.5	1.8	troposphere OH, on filter then extracted	82WA01
- OH	Benzene	14.4	1.8	OH trapping in an atmospheric model	82WA01
00 101	W W(2 2)	14.93	1.0/	$A_{11} = 0.33, M_2 U_2 + UV \text{ light}$	85TAU1
1 ¹⁰ 01:04	₩(2.3) ₩(2.2)	15.1	1.00	$n_{\rm H} = 0.3$, persuitate + AgNU ₃ A(17.0) = 2.0 persuitate + AcMO	BOMUUS BALADAS
100H	W(P7 8)	14 16	1.00	ractive) - 3.7, peisulate + Agivo,	201701
HOOH	W(P7.4)	14.16	1,80	microsomes/paraoust/NADPH	860007
("O) OOH	W(P7.4)	14.16	1.80	A(17-0) = 3.60, microsomes/narzouat/NADPH	860002
HOOH	W(P7.4)	14.18	1.72	microsomes/paraguat/NADPH	86M003
{ ¹⁷ 0}.00H	W(P7.4)	14.18	1.72	A(17-O) = 3.6, microsomes/paraquat/NADPH/	86M003
	•			¹⁷ O ₂	

Table 4 (Continued). POBN Spin Adduct Parameters

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
LOO' (7 see 86CO02)	₩(B9.0)	15.8	2.6	lipoxygenase + linoleic acid	81RO02, 81RO01
LOO' (? sec 86CO02)	W(B9.0)	- 15.8	2.6	microsomes + NADPH	81RO02, 81RO01
LOO' (? see 86CO02)	W(P7.4)	15.8	2.6	microsomes + NADPH ± CCl ₄	82RO02
LOO' (? see 86CO02)	W(P7.4)	15.8	2.6	liver homogenate + MLOOH	85M101
LOO' (? see 86CO02)	W(P7.4)	15.8	2.6	N-hydroxynorcocaine + microsomes	82RO03
LOO' (? see 86CO02)	W(P7.4)	15.8	2.6	Microsomes + nitrozepam	84RO04
LOO' (? see 86CO02)	W(P7.4)	15.8	2.6	microsomes + MLOOH	85MI01
LOO' (7 see 86CO02)	C/M 2:1	16.1	2.7	liver extract with AOML in vivo	85MI02
GS' GS'	EtOH/W 5:1 Benzene	15.13 15.23	2.32 2.28	α-chromanoxyl radical + GSH lerl-butoxyl radical + GSH	82NI01 82NI01

Table 5. M, PO---3,3,5,5-tetramethylpyrroline-N-oxide (sometimes referred to as TMPO)

.

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference(s)
H' '	MeOH	15.56	19.8(2)	n-Bu _s SnH	81JA01
H.	Benzene	14.61	18.29(2)	n-Bu ₃ SnH	81JA01
'CH ₁	W	16.60	27.00	$H_1O_2 + UV$	81JA01
·CH ₂ OH	McOH	15.12	21.99	$Ph_2CO + light$	81JA01
Phenyl	Benzene	14.41	23.86	phenylazotriphenylmethanc	81JA01
Phenyl	W(P7.4)	16.2	27.2	phenylhydrazine + crythrocytes	82H102
Phenyl	W(P7.4)	16.2	27.2	[2.0(M5] phenylhydrazine + erythrocytes	83HI01
C,H,Ċ (==0)	DBPO	14.18	14.18	di-tert-butylperoxalate	81JA01
$(CH_{1})_{2}NC^{-}(==0)$	DBPO	13.59	13.59	di-tert-butylperoxalate	81JA01
CO, ⁷	W	15.71	19.85	di-tert-butylperoxalate with formate	81JA01
N,	W	14.88	14.88	$A_{\rm N} = 2.98$, azide with peroxydisulfate	81JA01
ОН	W(P6)	15.30	16.88	$30\% H_{1}O_{1} + UV$	81JA01
OH	W(P6)	15.28	16.73	$1\% H_{10} + UV$	81JA01
'OH	W(P6)	15.29	16.81	peroxydisulfate	81JA01
OH	W(2)	15.29	16.82	peroxydisulfate	81JA01
0,7	Benzene	13.38	7.95	KQ,	81JA01
OOH (tentative)	W(P6)	45.67	20.01	$1\% H_{2}O_{2} + UV$	81JA01
OOH	W	15.7	20.0	[2.0060]	85TH02
ert-BuO'	Benzene	13.31	5.81	di-tert-butylperoxalate	81JA01
ert-BuO'	Toluene	13.28	5.42	photolysis of tert-butyl hydroperoxide	86DA02
ert-BuO'	Benzene	13.39	5.88	di-tert-butylperoxide	82HA01
ert-BuO'	Di-tert-butylperoxide	13.16	4.90	di-tert-butylperoxide	82HA01
Cumene alkoxyl	Toluene	13.12	4.56	photolysis of dicumylperoxide	86DA02
Dieic alkoxyl	Toluene	13.12	4.32	UV photolysis of peroxidized oleic acid	86DA02
inoleic alkoxyl	Toluene	13.28	4.32	UV photolysis of peroxidized linoleic acid	86DA02
inolenic alkoxyi	Toluene	13.28	4.32	UV photolysis of peroxidized linolenic acid	86DA02
Arachidonic alkoxyl	Toluene	13.28	4.56	UV photolysis of peroxidized arachidonic acid	86DA02
CH-C(==0)0'	Benzene	12.53	7.97	(PhC(==0)0);	81JA01
504 ⁻⁷	W(P6)	14.04	8.34	peroxydisulfate	81JA01
504 ⁻⁷	W(2)	13.99	8.33	peroxydisulfate	81JA01
TH,S	W(7.4)	15.47	17.07	UV photolysis of disulfide	87DA01
H,CH,S	W(7.4)	15.60	17.60	UV photolysis of disulfide	87DA01
IOCH CH S	W(7.4)	15.47	17.87	$UV + H_{2}O_{2}$ with 2-mercaptoethanol	87DA01
IOOCCH S	W(7.4)	15.30	17.80	UV + H.O. with 2-mercantoethanoic acid	87DA01
HCHCHS.	W(7.4)	15.60	19.20	UV + H.O. with 2-mercantoethylamine	87DA01
Iomocystine-S"	W(7.4)	15.47	18.13	UV photolysis of homocystine	87DA01
IOOC(CH.).S'	W(7.4)	15.46	18.00	UV photolysis of 3.3'-dithionropionic acid	87DA01
IOOC(CH.).S.	W(7.4)	15.47	18.00	UV photolysis of 4.4'-dithiobutyric acid	87DA01
lvsteinvl	W(7.4)	WC	ak .	UV photolysis of cystine	87DA01
iS'	W(7.4)	15.00	. 18.13	UV photolysis of glutathione disulphide	87DA01
-Mercantomonionvl	W(7.4)	15.33	18.13	UV + H.O. with 2-mercantonronionyl-alucine	87DA01

Tab	ole 6.	Nitrosodurene or N	ND	(2,3,5	,6-tetrameth	ylnitrosobenzenc)
-----	--------	--------------------	----	--------	--------------	-------------------

Adduct	Solvent	A _N /G	A _R /G	Other, [g-value], Source	Reference(s)
CH,	Benzene	13.70	12.17(3)	A(para-H) = 0.34, methyliodide + tri- <i>n</i> -butyltin	73TE01
'CH,	GA/McOH 1:1	14.4	13.1(3)	Cr(IV) complex + UV	79RE04
'CH,	GA/i-PrOH 1:1	14.4	13.2(3)	Cr(IV) complex + UV	79RE04
'CH,	GA	14.4	13.3(3)	$UO_2(NO_3)_2 + UV$	82RE03
'CH,	Benzene	13.7	12.9(3)	sonolysis of (CH3),SnSn(CH3),	84RE05
.CH ³ OH	MeOH	13.91	7.71(2)	di-tert-butyl peroxide + MeOH + UV	73TE01
'CH ₂ OH	GA/MeOH 1:1	14.4	8.2(2)	Cr(IV) complex + UV	79RE04
·CH ₂ CH,	Benzene	13.68	10.97(2)	ethylbromide + tri-n-butyltin	73TE01
·CH ₂ CH,	Proprionic acid	14.4	11.2(2)	$UO_1(NO_3)_2 + UV$	82RE03
CH ₂ CH,	Benzene	13.6	10.1(2).	sonolysis of Sn(CH ₂ C ₆ H ₃) ₃ Cl + ethyliodide	84RE05
CH,CH,	Benzene	13.6	10.0(2)	sonolysis of Sn(methyl) ₄ with ethyliodide	84RE05
'CH ₂ CN	AcN	13.49	9.67(2)	diazonium salt + ultrasound	84RE07
CH ¹ C.HOH	GA/EIOH 1:1	13.7	6.7	Cr(IV) complex + UV	79RE04
CH2COOH	GA	12.4	6.3	Cr(IV) complex + UV	79RE04
CH2COOH	GA	12.3	6.2(2)	$UO_{1}(NO_{3})_{2} + UV$	82RE03
n-Propyl	Proprionic acid	14.3	11.3(2)	$UO_2(NO_3)_2 + UV$	82RE03
iso-Propyl	Benzene	13.72	6.92	2-bromopropane + tri-n-butyltin	73TE01
iso-Propyl	iso-Proprionic acid	14.3	9.1	$UO_2(NO_3)_2 + UV$	82RE03
iso-Propyl	Benzene	13.7	7.0	sonolysis of $Sn(Bu)_2(Phenyl)_2 + 2$ -iodopropane	84REUS
iso-Propyl	Benzene	13.37		pesticide photolysis	85MI02
C ₂ H ₃ C'HOH	GA/n-PrOH 1:1	14.7	2.7	Cr(IV) complex + UV	79RE04
CH ₃ C'(OH)CH ₃	GA/iso-PrOH 1:1	14.3		Cr(IV) complex + UV	79RE04
n-Bu'	Benzene	13.4	10.4	A(13-C) = 7.0, tributyltin chromate	81RE01
n-Bu'	CH ₂ Cl ₂	13.7	· 10.9	A(13-C) = 7.0, tributyltin chromate	81RE01
n-Bu'	Benzene	13.49	10.65(2)	$A_{\rm H} \approx 0.75(2)$, sonolysis of Bu ₃ SnSnBu ₃	84RE05
tert-Bu'	Benzene	13.60		tert-butylbromide + tri-n-butyltin	73TE01
°C14H20NO3*	AcN	10.11	2.90	diazonium salt + ultrasound	84RE07
[•] C ₁₄ H ₂₀ NO ₃ *	Benzene	10.12	2.88	$A_{\rm H} = 0.99$, diazonium salt + ultrasound	84RE07
'CHO	CH ₂ Cl ₂	6.8	1.6	dichromate + UV	82RE01
'COCI	CH ₂ Cl ₂	8.4		dichromate + UV	82RE01
·CHCl ₂	CH ₂ Cl ₂	11.13	1.14	A(Cl) = 3.01(2), CH ₂ Cl ₂ + di- <i>tert</i> -butyl peroxide + UV	73TE01
CHCl	CHCl,	11.1	1.1	A(Cl) = 3.0, dichromate + UV	82RE01
·CCl,	Benzene	10.73		$A(CI) = 1.31(3), di-tert-BuOO + CHCI_3 + UV$	73TE01
·CCI,	CCl ₄ /CH ₂ Cl ₂ 9:1	10.7		A(CI) = 1.3, dichromate + UV	82RE01
Benzyl	Benzene	13.61	7.93	di-tert-butyl peroxide + toluene + UV	73TE01
Benzyl	Toluene	13.4	7.48	gamma-radiolysis	78ZO01
†Benzyl, substitute	d-from pesticide photolysi	s. See also 82	MI02.		
Phenylethyl	Benzene	13.59	10.87(2)	1-phenyl-2-bromoethane + tri-n-butyltin	73TE01
Cumyl	Benzene	13.59		[2.0064] 2-phenylpropane + tert-BuO'	73TE01
Benzoyl	Benzene	7.24		benzaldehyde + di-tert-butyl peroxide + UV	73TE01
Phenyl	Benzene	10.11		[2.0057] benzoyl peroxide + UV	73TE01
Phenyl	Benzene	10.1	2.76(3)	$A_{\rm H} = 0.95(2)$, gamma-irradiation	78ZU01
Phenyl	Benzene	10.1	2.75(3)	$A_{\rm H} = 0.95(2)$, gamma-irradiation	78ZU02
Phenyl	AcN	10.47	2.86(3)	$A_{\rm H} = 0.98(2)$, diazonium compounds + ultrasound	84RE07
Phenyl	Benzene	10.08	2.79(3)	$A_{\rm H} = 0.95(2)$, diazonium compounds + ultrasound	84RE07
Phenyl	Benzene	10.10	2.75(3)	$A_{\rm H}$ (meta) = 0.95(2), decay of tritiated Benzene	85HA01
Phenyl	Benzenc	10.1	2.8(3)	sonolysis of (phenyl), SnSn(phenyl),	85RE05
p-HOC ₆ H ₄ °	Benzene	11.80		$A_{\rm H} = 3.25, 2.75, 0.83(3)$ [2.0050] Ni-peroxide + PhOH	73TE01
N, [•]	McOH	7.34(2)		$A_{\rm N} = 2.29$, photolysis of cobalt azido complex	79RE02
N,'	McOH/CH2Cl2	7.3(2)		$A_{\rm N} = 2.3$ (2.0059) metal complex + UV and azide	79RE05
¹³ N ₃ .	W	7.7(2)		$A(15-N) = 3.3, H_2O_2 + azide + UV$	82KR01
N ₂	CH ₂ Cl ₂	7.21(2)		$A_{\rm N} = 2.38$, tetrabutylammonium azide + UV	84RE04
N,	CH ₂ Cl ₂	7.21(2)		$A_{\rm N} = 2.38$, tetrabutylammonium azide + UV	84RE06
'NCO	CH ₂ Cl ₂	7.23(2)		$A_{\rm N} = 2.40$, tetraamonium cyanide + UV	84RE06
iso-BuO'	GA/iso-BuOH 1:1	26.7		Cr(IV) complex + UV	79RE04
tert-BuO'	Benzene	25.18		di-tert-butyl peroxide + UV	73TE01
tert-BuO'	GA/tert-BuOH 1:1	27.8		Cr(IV) complex + UV	79RE04
CH'2.	Benzene	16.48		[2.0068] photolysis of disulfide	73TE01
n-propyl-S	Benzene	16.82		[2.0068] photolysis of disulfide	73 TE 01
Phenyl-S	Benzene	16.01		[2.0057] photolysis of disulfide	73 TE 01

*2,5-Diethoxy-4-(N-morpholino)phenyl. The hyperfine splittings for nine substituted benzyl adducts of nitrosodurene, as well as these same radical adducts of N-benzylidene-tert-butylamine N-oxide, are presented in 85M104. **The hyperfine splittings for 34 different aryl and arylcyclobexadienyl duryl nitroxides are presented in 76SU01.

Table 7. Other Spin Trap Spin Adduct Parameters

Adduct	Solvent	A _N /G	A _H /G	Other, [g-value], Source	Reference
4-PyBN4-pyridyl-N-to	ert-butyl nitrone				
H' Phone al	W an tire	16.0	10.0	ultrasound in water	82MA01
Phenyl	30 different	14.06-15.	13 1.77-3.57	PAT	82JA01
		A _H =	1.06A _N -13.08	for the phenyl radical	82JA01
N,'	W	` 14.68	1.95	$A_{\rm N} \approx 1.95, e^{-}$ irradiation	80KE01
'OH	W	15.0	1.9	e ⁻ irradiation	80KE01
4-MePyBn-4-(N-meth)	vlpyridinium) tert-buryl	nitrone •			
H.	W(P3.0)	15.51	6.24(2)	peroxydisulfate	79JA01
H.	W	16.0	10.0(2)	ultrasound in water	85RI01, 83M
D'	D,O	16.0	10.0	$A_n = 1.5$, ultrasound in water	85R101, 83M
CH.OH	W(6)	15 23	2 59	H_{0} + 11V with MeOH	ROMANI
Phenyl	w	15 20	2.57	electrochemical	801/101
nuly	W/DE ()	14.70	1.45	$A \sim 0.29 M \Omega + 11V$	701401
	W(r 0, 0)	14.70	1.45	$A_{\rm H} = 0.38, n_2 O_2 + 0.0$	777401
On	W(0)	14.01	1.45	$\mathbf{h}_{2}\mathbf{U}_{2} + \mathbf{U}\mathbf{v}$	SUMAU2
UH	W	14.7	1.5	$A_{\rm H} = 0.4$, ultrasound in water	85KI01, 83M
"OH"	W	14.70	1.45	Blue dye No. 1 + light, not 'OH	85CA01
OD	D ₂ O(P6.0)	14.76	1.43	$H_2O_2 + UV$	79JA01
OOH	W(P7.0)	13.78	1.65	[2.0091] pheomelanin + light or XOD	80SA01
OOH	W	13.80	1.58	adriamycin or daunomycin + light	83CA01
SQ.7	W(P6 ())	13.96	1 21	peroxydisulfate	791401
५०४ भ	AcN	12.20	0.83	A/C1.25.27 = 6.20 5.12 electrochemical	P31403
	Acia	12.27	0.62	A(CI-33,37) = 0.20, 5.12; electrochemical	82 W AU2
MNS-perdeuterio 2,4	-dimethyl-3-nitrosoben	enesulfonate			
DS alkyl radical	Micelle	14.7	9.1	photoreduction of naphthoquinone	850K01
OPBN-a-(4-dodecylo	xyphenyl)-N-ten-buryl	nitrone			
henyl	W/SDS	15.05	3.19	phenylazotriphenylmethane in micelles	81WA01
henvl	W/SDS	15.02	3 22	phenyldiazonium tetrafluorohorate in micelles	81WA01
henvi	W/AN 1-1	15.05	1 21	phenylatoment touristic in meenes	@1W/A01
hansi	W/ANTI.I	15.05	3.21	phenylazouriphenyliteurane	01 101
nenyi	W/AN 1:1	15.00	3.23	phenyldiazonium tetratiuoroborate	BIWAUI
henyl	W/AN 1:1	15.08	3.19	phenyllithium	81WA01
henyl	Vesicles	14.73	2.81	DODAC/DOPBN vesicles + PAT	82WA02
henyl	Vesicles	14.77	2.70	DODAC/DOPBN vesicles + PDT	82WA02
henyl	Vesicles	14.76	2.75	lecithin/DOPBN vesicles + PAT	82WA02
henvi	Vesicles	14.77	2 75	lecithin/DOPBN + PDT	82WA02
henvi	CHCI	14 70	2.70	she will this m	83W/A02
henyl	W/SDS	15.29	3.56	phenylazo-4-pyridyldiphenylmethane	84JA02
SCAN Codium 2 auto	Foundary housed have been de				
-331 DIN3001000 2-3013	Manutophenyi (ch-ouiyin	16.09	6.00	-hand A model dish des-abs	8414.00
nenyi	W	15.98	5.90.	pnenylazo-4-pyridyldipnenylmethane	84JAU2
3	AcN	14.36	2.97	$A_N = 2.17$, electrochemical	82WA02
DH	W	15.7	5.2	octacyanomolybdate(V) + UV	82RE02
OH"	W	15.71	5.28	sodium persulfate	84JA02
O H "	W/SDS	15.71	5.28	sodium persulfate with SDS micelles	84JA02
NPOI 7. Methyl. 7. nii	rosa-1-propagal				
· · · · · · · · · · · · · · · · · · ·	W(B9.0)	15.7	26.2	NaBH of microsomes + NADPH	81RO01
oid radical	W(B9.0)	16.6	2.1	lipoxygenase + linoleic acid	81RO01
) (MA). PRN_12. hvdr	on A 6 dimethyloninhe	and test-hused	ritrone)		
Conto de presentación	Folch	15 A5	2 A7	in vivo CCL in the liver extended	9454001
	AcN	14 31	2.01		SHWLUI
DH"	W	14.31	2.35 8.85	A(C) = 9.02, in vivo rat liver, extracted hexachloroplatinate(IV) + light,	84MC01 84RE01
	F-1-1		13.8	Cl hydrolysis	
7-Dutyinyaronitroniae?	roich	14.5	13.8	in vivo hydrolysis of (MO) ₃ PBN	84MC01
trosobenzene					
IJ(CN)C	Benzene	11.54	2.18(3), 0.86(2)	azobisisobutyronitrile	82BE01
enyl radical	Benzene	9.60	1.79(6), 0.80(4)	benzoyl peroxide	82BE01
methylbenzyl	W(TR3.0)	14.0	5.0	$A_{\mu} = 3.4, 1.1$; lignin model + ligningse	86HA01
a-dimethylbenzyl	WITR7 4)	12.6		$A_{ii} = 1.0$ lignin model + ligningse	864401
shon radio-1	W/D/ S		. given	12 006] minois sold and has sold	94TWA1
	n (F / J) Banaaa		r Braen		001WU1
	$X = \operatorname{Rr} C U$	11.35-12.00	CH. OCH. NH	$A(\mathbf{n}, \mathcal{L}) = \mathcal{L}.30 - \mathcal{L}.30, A(\mathbf{n}, 1) = 0.93 - 1.30$	531101
	$-\pi - \mu_1, \nu_2, \eta_1$, .c/1-04(y1,	ung, uung, iung	provorysis or respective disulting.	
DNmethyl-N-dwylnin	rone				
ala 11 12 a. a. 11				mannal limelaste i dest Haffy	U41/4/1
thyl linoleate-C	Benzene	14.32	0.40	methyl linoleate + leri-buo	84 I AU I

۰.

•

Table 7 (Continued). Other	Spin 7	Frap Sp	pin Adduct	Parameters

Adduct Solvent		A_N/G	А _Н /G	Other, [g-value], Source	Reference(s)
[MDN Continued]					
tert-BuO'	Benzene	13.13	7.91	di-tert-butyl peroxide + UV	82KO03
tert-BuO'	Benzene/tert-BuOH	12.82	4.76	[2.0059] di-tert-butyl peroxide + UV	82KO03
tert-BuO'	Benzene	14.10	7.47	lert-BuOOC(O)C(O)OO-tert-Bu	83NI01
LO.	Benzene	13.35	6.25	LOOH + Co(II)	83NI01
Tetralyloxyl	Benzene	13.08	5.95	tetralylOOH + Co(II)	83NI01
tert-BuOO	Benzene	12.80	4.61	tert-BuOOH + tert-BuO'	83NI01
MDN Continued					
L00 [.]	Benzene	12.45	4.69	LOOH + tert-BuO'	83NI01 .
Tetralyldioxyl	Benzene	12.63	4.55	tertralylOOH + tert-BuO'	83NI01
CH ₃ S ¹	Benzene	12.67	4.44	$A_{\rm H} = 0.90(3), 0.45(4)$ disulfide photolysis	82KO03
CH,CH,S'	Benzene	12.78	4.80	$A_{\rm H} = 0.57(6)$ photolysis of disulfide	82KO03
n-Propyl-S'	Benzenc	12.78	4.80	$A_{\rm H} = 0.56(4)$ photolysis of disulfide	82KO()3
Phenyl-S'	Benzenc	12.61	5.36	$A_{\rm H} = 0.45(4)$ photolysis of disulfide	83KO03
DBNBS-3,5-dibromo	-4-nitrosobenzene sulfonate	.*			
'CH ₁	W	n.	ot given	DMSO and base $+ H_2O_2$	86OZ01
O, 7 (? see 87ST01)	W(P7.2)	12.63	0.71(2)	[2.0066] xanthine oxidase or DMSO, basic	86OZ01
SO,	W	12.9	0.8(2)	[2.0063] sulfite + Ce(IV) or H ₂ O ₂	87OZ01
SOj [†]	W/DMSO 1:1	12.6	0.62(2)†	decomposition of DMSO in base	87ST01
Proline					
'OH	W(CH7.1)	15.8	21.3(2)	$A_{\rm H} = 17.7$, ADP-Fc(11)-H ₂ O ₂	84FL.02
Hydroxynroline			,		
.OH	W(CH7.1)	15.4	25.6, 20.3	$A_{\rm N} = 1.51$, ADP-Fc(11)-H ₂ O ₂	84FL02
TMPO-2.5.5 trimethy	vl-1-pvrroline-1-oxide				
Н.	Benzenc	14.30	20.53	$A_{\mu} = <1.0$, photolysis of <i>n</i> -Bu ₁ SnH	73JA02
F	Benzenc	11.74		$A_{\rm H} = 1.63(2), A_{\rm F} = 52.7$, silver difluoride	73JA01
tert-BuO'	Benzene	12.90		$A_{\rm H} \approx 2.30, \text{DBPO}$	73JA02
C,H,C(=0)-0	Benzene	12.71		$A_{\rm H} = 1.2, 0.7; (C_{\rm A}H_{\rm S}CO_{\rm 2}),$	73JA02
HOOH	W(P7.8)/DMF 10/1	15.6		tetramethylammonium superoxide	79F101

*See reference 81KA01 for the initial work with this spin trap. In addition, reference 82ET01 provides results from gamma-irradiated amino acids. †Additional hyperfine splittings are resolved and assigned.

REFERENCES

- 671W01. Iwamura M., Inamoto N. Novel formation of nitroxide radicals by addition to nitrones. Bull. Chem. Soc. Jpn. 40: 703; 1967.
- 68JA01. Janzen E. G., Blackburn B. J. Detection and identification of short-lived free radicals by an electron spin resonance trapping technique. J. Am. Chem. Soc. 90: 5909-5910; 1968.
- 69JA01. Janzen E. G., Blackburn B. J. Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds. J. Am. Chem. Soc. 91: 4481-4490; 1969.
- 70IW01. Iwamura M., Inamoto N. Reactions of nitrones with free radicals. II. Formation of nitroxides. Bull. Chem. Soc. Jpn. 43: 860-863; 1970.
- *70N001. Norman R. O. C. Electron spin resonance studies of free radicals and their reactions in aqueous solution. In: Essays in Free Radical Chemistry, pp. 117-145, Special Publication No. 24, Chemical Society, London (1970).
- 70PE01. Perkins M. J., Ward P., Horsfield A. A probe for homolytic reactions in solution. Part III. Radicals by hydrogen abstraction. J. Chem. Soc. (B) 395-400; 1970.
- *70PE02. Perkins M. J. The trapping of free radicals by diamagnetic scavengers. In: Essays in Free Radical Chemistry, pp. 97-115, Special Publication No. 24, Chemical Society, London (1970).

*Those references that are noted with an asterisk are review articles dealing with various aspects of spin trapping or which include an informative section on the use of spin trapping.

- 71AU01. Aurich H. G., Trocsken J. Loesungsmittelabhaengigkeit der ESR-Spectren von Alkyl-acyl-nitroxiden. Liebigs Ann. Chem. 745: 159-163; 1971.
- 71BL01. Bluhm A. L., Weinstein J., Sousa J. A. Free radicals in tobacco smoke. Nature 229: 500; 1971.
- *71JA01. Janzen E. G. Spin trapping. Accounts Chem. Res. 4: 31-40; 1971.
- *71LA01. Lagerciantz C. Spin trapping of some short-lived radicals by the nitroxide method. J. Phys. Chem. 75: 3466-3475; 1971.
- 73JA01. Janzen E. G., Liu J. I.-P. Radical addition reactions of 5,5-dimethyl-1-pyrroline-1-oxide. ESR spin trapping with a cyclic nitrone. J. Mag. Resonance 9: 510-512; 1973.
- 73JA02. Janzen E. G., Evans C. A., Liu J. I.-P. Factors influencing hyperfine splitting in the ESR spectra of five-membered ring nitroxides. J. Mag. Resonance 9: 513-516; 1973.
- 73LE01. Ledwith A., Russell P. J., Sutcliffe L. H. Alkoxy radical intermediates in the thermal and photochemical oxidation of alcohols. Proc. R. Soc. Lond. A 332: 151-166; 1973.
- 73TE01. Terabe S., Kuruma K., Konaka R. Spin trapping by use of nitroso-compounds. Part IV. Nitrosodurene and other nitrosobenzene derivatives. J. Chem. Soc. Perkin Trans. II 1252-1258; 1973.
- 74HA01. Harbour J. R., Chow V., Bolton J. R. An electron spin resonance study of the spin adducts of OH and HO₂ radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions. *Can. J. Chem.* 52: 3549-3553; 1974.

- 74MA01. Mao S. W., Kevan L. Electron paramagnetic resonance studies of spin trapping of the primary neutral radicals formed in gamma-irradiated methanol. Chem. Phys. Letters 24: 505-507; 1974.
- 75HA01. Harbour J. R., Bolton J. R. Superoxide formation in spinach chloroplasts: Electron spin resonance detection by spin trapping. Biochem. Biophys. Res. Commun. 64: 803-807; 1975.
- 75JA01. Janzen E. G., Evans C. A. Rate constants for the addition of phenyl radicals to N-(tert-butyl)-α-phenylnitrone (spin trapping) and benzene (phenylation) as studied by electron spin resonance. J. Am. Chem. Soc. 97: 205-206; 1975.
- 75SA01. Sato T., Kita S., Otsu T. A study of initiation of vinyl polymerization with diacyl peroxide-tertiary amine systems by spin trapping technique. *Makromol. Chem.* 176: 561-571; 1975.
- 75ZU01. Zubarev V. E., Belevskii V. N., Bugaenko L. T. A spintrap study of radical products of gamma-radiolysis of methanol. *Moscow Univ. Chem. Bull.* 30: 28-31; 1975.
- 76JO01. Joshi A., Rustgi S., Riesz P. E.S.R. of spin-trapped radicals in gamma-irradiated aqueous solutions of nucleic acids and their constituents. Int. J. Radiat. Biol. 30: 151-170; 1976.
- 76K001. Kominami S., Rokushika S., Hatano H. Studies of shortlived radicals in the gamma-irradiated aqueous solution of uridine-5'-monophosphate by the spin-trapping method and the liquid chromatography. Int. J. Radiat. Biol. 30: 525-534; 1976.
- 76SA01. Sargent F. P., Gardy E. M. Spin trapping of radicals formed during radiolysis of aqueous solutions. Direct electron spin resonance observations. Can. J. Chem. 54: 275-279; 1976.
- 76SU01. Suchiro T., Kamimori M., Tokumaru K., Yoshida M. Reactivity pattern of aryl radicals toward benzene and nitrosodurene. Trapping of cyclohexadienyl radicals by nitrosodurene. *Chemistry Lett.* 531-543; 1976.
- 77FL01. Floyd R. A., Soong L. M. Spin trapping in biological systems. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline-1oxide by a hydroperoxide-hematin system. Biochem. Biophys. Res. Commun. 74: 79-84; 1977.
- 77HA01. Harbour J. R., Hair M. L. Superoxide generation in the photolysis of aqueous cadmium sulfide dispersions. Detection by spin trapping. J. Phys. Chem. 81: 1791-1793; 1977.
- 77IW01. Iwahashi H., Ishikawa Y., Sato S., Koyano K. The application of spin trap, phenyl *i*-butyl nitrone to the study of the gamma-radiolysis of cyclohexane. Bull. Chem. Soc. Jpn. 50: 1278-1281; 1977.
- 77KO01. Kotake Y., Okazaki M., Kuwata K. Electron nuclear double resonance study of some nitroxide radicals produced in spin trapping. J. Am. Chem. Soc. 99: \$198-5199; 1977.
- 77LAOI. Lai C.-S., Piette L. H. Hydroxyl radical production involved in lipid peroxidation of rat liver microsomes. Biochem. Biophys. Res. Commun. 78: 51-59; 1977.
- 77ME01. Merritt M. V., Johnson R. A. Spin trapping, alkylperoxy radicals and superoxide-alkyl halide reactions. J. Am. Chem. Soc. 99: 3713-3719; 1977.
- 77OH01. Ohto N., Niki E., Kamiya Y. Study of autoxidation by spin trapping. Spin trapping of peroxyl radicals by phenyl N-Ibutyl nitrone. J. Chem. Soc. Perkin Trans. II 1770-1774; 1977.
- 77RU01. Rustgi S., Joshi A., Moss H., Riesz P. E.S.R. of spintrapped radicals in aqueous solutions of amino acids. Reactions of the hydroxyl radical. Int. J. Radiat. Biol. 31: 415-440; 1977.
- 77RU02. Rustgi S., Joshi A., Riesz P., Friedberg F. E.S.R. of spintrapped radicals in aqueous solutions of amino acids, Reactions of the hydrated electron. Int. J. Radiat. Biol. 32: 533-552; 1977.
- 77SA01. Saprin A. N., Piette L. H. Spin trapping and its application in the study of lipid peroxidation and free radical production with liver microsomes. Arch. Biochem. Biophys. 180: 480-492; 1977.
- 78BU01. Buettner G. R., Oberley L. W. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethylpyrroline-1-oxide. *Biochem. Diophys. Res.* Commun. 83: 69-74; 1978.
- 78BU02. Buettner G. R., Oberley L. W., Leuthauser S. W. H. C. The effect of iron on the distribution of superoxide and hydroxyl

2

radicals as seen by spin trapping and on the superoxide dismutase assay. Photochem. Photobiol. 28: 693-695; 1978.

- 78FE01. Felix C. C., Hyde J. S., Sarna T., Scaly R. C. Melanin photoreactions in aerated media: Electron spin resonance evidence for production of superoxide and hydrogen peroxide. *Biochem. Biophys. Res. Commun.* 84: 335-341; 1978.
- 78FL01. Floyd R. A., Soong L. M., Stuart M. A., Reigh D. L. Spin trapping of free rudicals produced from nitrosoamine carcinogens. *Photochem. Photobiol.* 28: 857-862; 1978.
- *78FR01. Freidlina R. Kh., Kandror I. I., Gàsanov R. G. Study of short-lived chlorine- and sulfur-containing radicals by a spin trap method. Usp. Khim. 47: 508-536; 1978.
- 78GR01. Griffin B. W., Ting P. L. Spin trapping evidence for free radical oxidents of aminopyrine in the metmyoglobin-cumene hydroperoxide system. FEBS Lett. 89: 196-199; 1978.
- 78HA01. Harbour J. R., Bolton J. R. The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls in vivo and in vitro. *Photochem. Photobial.* 28: 231-234; 1978.
- 78HA02. Harbour J. R., Hair M. L. Detection of superoxide ions in nonaqueous media. Generation by photolysis of pigment dispersions. J. Phys. Chem. 82: 1397-1399; 1978.
- 78HO01. Howard J. A., Tait J. C. Electron paramagnetic resonance spectra of the *tert*-butylperoxy and *tert*-butoxy adducts to phenyl *tert*-butyl nitrone and 2-methyl-2-nitrosopropane. Oxygen-17 hyperfine coupling constants. Can. J. Chem. 56: 176-178; 1978.
- 781N01. Ingall A., Lott K. A. K., Slater T. F., Finch S., Stier A. Metabolic activation of carbon tetrachloride to a free-radical product: Studies using a spin trap. Biochem. Soc. Trans. 6: 962– 964; 1978.
- 78JA01. Janzen E. G., Wang Y. Y., Shetty R. V. Spin trapping with alpha-pryidyl 1-oxide N-tert-butyl nitrones in aqueous solutions. A unique electron spin resonance spectrum for the hydroxyl radical adduct. J. Am. Chem. Soc. 100: 2923-2925; 1978.
- 78JA02. Janzen E. G., Nutter D. E., Jr., Davis E. R., Blackburn B. J., Poyer J. L., McCay P. B. On spin trapping hydroxyl and hydroperoxyl radicals. Can. J. Chem. 56: 2237-2242; 1978.
- 78JC01. Joshi A., Rustgi S., Moss H., Riesz P. E.S.R. of spintrapped radicals in aqueous solutions of peptides. Reactions of the hydroxyl radical. Int. J. Radiat. Biol. 33: 205-229; 1978.
- 78JO02. Joshi A., Moss H., Ricsz P. E.S.R. study of the postradiolysis growth of spin-trapped radicals in gamma-irradiated aqueous solutions of thymine. Int. J. Radiat. Biol. 34: 165-176; 1978.
- 78KA01. Kasal P. H., McLeod D., Jr. Detection by spin trapping of H and OH radicals generated during electrolysis of water. J. Phys. Chem. 82: 619-621; 1978.
- 78LA01. Lai C. S., Piette L. H. Spin-trapping studies of hydroxyl radical production involved in lipid peroxidation. Arch. Biochem. Biophys. 190: 27-38; 1978.
- 78L101. Lion Y., Van de Vorst A. Spin trapping of free radicals formed during visible irradiation of an acridine dye: 3,6-diaminoacridine (proflavine). J. Photochem. 9: 545-550; 1978.
- 78LO01. Lown J. W., Sim S.-K., Chen H.-H. Hydroxyl radical production by free and DNA-bound aminoquinone antibiotics and its role in DNA degradation. Electron spin resonance detection of hydroxyl radicals by spin trapping. Can. J. Chem. 56: 1042– 1047; 1978.
- 78MA01. Maillard P., Massot J. C., Giannotti C. Photolysis in aprotic solvents of some alkylcobalt(III) complexes; an ESR and spin-trapping technique study. J. Organometal. Chem. 159:219-227; 1978.
- 780Z01. Ozawa T., Hanaki A. Hydroxyl radical produced by the reaction of superoxide ion with hydrogen peroxide: Electron spin resonance detection by spin trapping. Chem. Pharm. Bull. 26: 2572-2575; 1978.
- 78PO01. Poyer J. L., Floyd R. A., McCay P. B., Janzen E. G., Davis E. R. Spin-trapping of the trichloromethyl radical produced during enzymatic NADPH oxidation in the presence of carbon tetrachloride or bromotrichloromethane. *Biochim. Biophys. Acta* 539: 402-409; 1978.
- 78RU01. Rustgi S., Riesz P. Hydrated electron-initiated main-chain scission in peptides. An e.s.r. and spin-trapping study. Int. J. Radiat. Biol. 34: 449-460; 1978.
- 78RU02. Rustgi S. N., Riesz P. An e.s.r. and spin-trapping study

of the reactions of the 'SO₄-radical with protein and nucleic acid constituents. Int. J. Radiat. Biol. 34: 301-316; 1978.

- 78RU03. Rustgi S. N., Riesz P. E.S.R. of free radicals in aqueous solutions of substituted pyrimidines. Int. J. Radiat. Biol. 33: 21– 39; 1978.
- 78RU04. Rustgi S. N., Riesz P. E.S.R. study of spin-trapped radiculs formed during the photolysis of aqueous solutions of acid amides and H₂O₂. Int. J. Radiat. Biol. 33: 325-339; 1978.
- 78RU05. Rustgi S. N., Riesz P. E.S.R. of spin trapped radiculs in aqueous solutions of dihydropyrimidine bases. *Radiation Res.* 75: 1-17; 1978.
- 78RU06. Rustgi S. N., Riesz P. E.S.R. and spin-trapping studies of the reactions of hydrated electrons with dipeptides. Int. J. Radiat. Biol. 34: 127-148; 1978.
- 78RU07. Rustgi S. N., Riesz P. Free radicals in UV irradiated aqueous solutions of substituted amides. An E.S.R. and spintrapping study. Int. J. Radiat. Biol. 34: 149-163; 1978.
- 78SE01. Scaly R. C., Swartz H. M., Olive P. L. Electron spin resonance-spin trapping. Detection of superoxide formation during aerobic microsomal reduction of nitro-compounds. *Biochem. Biophys. Res. Commun.* 82: 680-684; 1978.
- 78SU01. Sugiura Y., Kikuchi T. Formation of superoxide and hydroxy radicals in iron(II)-bleomycin-oxygen system: electron spin resonance detection by spin trapping. J. Antibiotics 31: 1310-1312; 1978.
- 78ZU01. Zubarev V. E., Belevskii V. N., Zarazilov A. L. Identification of radicals during gamma-radiolysis of benzene and toluene by the spin trap method. *Moscow Univ. Bull.* 33: 62-66; 1978.
- 78ZU02. Zubarev V. E., Bugaenko L. T. Identification and determination of the yields of radicals in gamma-irradiated liquid benzene with the aid of nitrosodurene. Doklady Akademii Nauk SSSR 242: 136-139; 1978 or Doklady Phys. Chem. 241: 765-768; 1978.
- 79BA01. Bancroft E. C., Blount H. N., Janzen E. G. Spin trapping in electrochemistry. 1. On the electrooxidation of organoborides. J. Am. Chem. Soc. 101: 3692-3694; 1979.
- 79BU01. Buettner G. R., Oberley L. W. Superoxide formation by protoporphyrin as seen by spin trapping. FEBS Lett. 98: 18-20; 1979.
- 79CO01. Cox G. S., Whitten D. G., Giannotti C. Interaction of porphyrin and metalloporphyrin excited states with molecular oxygen. Energy-transfer versus electron-transfer quenching mechanisms in photooxidations. Chem. Phys. Lett. 67: 511-515; 1979.
- *79EV01. Evans C. A. Spin trapping. Aldrichimica Acta 12: 23-29; 1979.
- 79F101. Finkelstein E., Rösen G. M., Rauckman E. J., Paxton J. Spin trapping of superoxide. Mol. Pharmacol. 16: 676-685; 1979.
- 79FL01. Floyd R. A., Wiseman B. B. Spin-trapping free radicals in the autooxidation of 6-hydroxydopamine. *Biochim. Biophys. Acta* 586: 196-207; 1979.
- 79FO01. Forester A. R., Neugebauer F. A. (Eds.) Magnetic Properties of Free Radicals. Landolt-Börnstein, New Series Group 11, Vol. 9, Part C1, Springer-Verlag, Berlin (1979).
- 79GA01. Gasanov R. G. Determination of rate constants for rearrangement of w-carbalkoxyalkyl radicals by the EPR method employing spin traps. Bull. Acad. Sci. USSR 28: 835-837; 1979.
- 79GA02. Gasanov R. G., Freidlina R. K. An ESR and spin-trap study of the interaction of acyl peroxides with tetrahalomethanes in the presence of iron compounds. Bull. Acad. Sci. USSR 28: 34-37; 1979.
- 79GR01. Green M. R., Hill H. A. O., Okolow-Zubkowska M. J., Segal A. W. The production of hydroxyl and superoxide radicals by stimulated human neutrophils—measurements by EPR spectroscopy. FEBS Lett. 100: 23-26; 1979.
- 79GR02. Green M. R., Hill H. A. O., Okolow-Zubkowska M. J., Esnouf M. P., Walter S. J. The production of radicals by rat liver microsomal fractions: Inhibition by copper complexes. *Biochem.* Soc. Trans. 7: 718-719; 1979.

79HA01. Harbour J. R., Hair M. L. Radical intermediates in the

photosynthetic generation of H_2O_2 with aqueous ZnO dispersions. J. Phys. Chem. 83: 652-656; 1979.

- 79JA01. Janzen E. G., Dudley R. L., Shetty R. V. Synthesis and electron spin resonance chemistry of nitronyl labels for spin trapping. alpha-phenyl N-[5-(5-methyl-2,2-dialkyl-1,3-dioxanyl)] nitrones and alpha-(N-alkylpyridinium) N-(*iert*-butyl) nitrones. J. Am. Chem. Soc. 101: 243-245; 1979.
- 79KA01. Kalyanaraman B., Perez-Reyes E., Mason R. P. The reduction of nitroso-spin traps in chemical and biological systems. A Cautionary note. *Tetrahedron Lett.* 4809-4812; 1979.
- 79KA02. Kalyanaraman B., Mason R. P., Perez-Reyes E., Chignell C. F. Characterization of the free radical formed in aerobic microsomal incubations containing carbon tetrachloride and NADPH. *Biochem. Biophys. Res. Commun.* 89: 1065-1072; 1979.
- 79LA01. Lai E. K., McCay P. B., Noguchi T., Fong K.-L. In vivo spin-trapping of trichloromethyl radicals formed from CCl₄. Biochem. Pharmacol. 28: 2231-2235; 1979.
- 79LA02. Lai C.-S., Grover T. A., Piette L. H. Hydroxyl radical production in a purified NADPH-Cytochrome c (P-450) reductuse system. Arch. Biochem. Biophys. 193: 373-378; 1979.
- 79LA03. Lai C.-S., Piette L. H. Further evidence for OH radical production in Fenton's system. *Tetrahedron Lett.* 775-778; 1979.
- 79MA01. Makino K. Studies on spin-trapped radicals in gammairradiated aqueous solutions of DL-methionine by high performance liquid chromatography and ESR spectroscopy. J. Phys. Chem. 83: 2520-2523; 1979.
- 79MA02. Makino K., Suzuki N., Moriya F., Rokushika S., Hatano 'H. Separation and characterization of spin-adducts in a gammairradiated aqueous solution of 2-methyl-2-nitropropane by a high performance liquid chromatograph equipped with an ESR spectrometer. Chem. Lett. (Japan) 675-678; 1979.
- 79MA03. Makino K., Hatano H. Separation and characterization of short-lived radicals in DL-methionine aqueous solution by high speed liquid chromatograph equipped with ESR spectrometer. Chem. Lett. (Japan) 119-122; 1979.
- 79RE01. Rehorek D. Photokatalytische Systeme, XVII. Spin-Trapping von Radikalen bei der Photolyse von Cer(IV) in Alkoholen. Acta Chim. Acad. Sci. Hung. 101: 395-403; 1979.
- 79RE02. Rehorek D. Ueber die Bildung freier Radikale bei der Photolyse von Eisen(III)chlorid in Alkoholen. Z. Chem. 19: 262-263; 1979.
- 79RE03. Rehorek D., Thomas P., Henning H. Spin trapping of azide radicals in photolysis of azido cobalt(III) complexes. *Inorgan. Chim. Acta* 32: L1-L2; 1979.
- 79RE04. Rehorek D., Wagener R. Ueber die Bildung freier Radikale bei der photochemischen Oxydation von Alkoholen durch Chromium(VI) in Eisessig. Z. Chem. 19: 108-109; 1979.
- 79RE05. Rehorek D., Hennig H. Ueber die Photooxydation von Azidionen durch Metallkomplexe. Z. Chem. 19: 263-264; 1979.
- 79RI01. Riesz P., Rustgi S. N. Aqueous radiation chemistry of protein and nucleic acid constituents: ESR and spin-trapping studies. Radiat. Phys. Chem. 13: 21-40; 1979.
- 79RO01. Rosen H., Klebanoff S. J. Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy. J. Clin. Invest. 64: 1725-1729; 1979.
- 79SU01. Sugiura Y. The production of hydroxyl radical from copper(1) complex systems of bleomycin and tallysomycin: Comparison with copper(11) and iron(111) systems. Biochem. Biophys. Res. Commun. 90: 375-383; 1979.
- 79SU02. Sugiura Y. Production of free radicals from phenol and tocopherol by bleomycin-iron(II) complex. Biochem. Biophys. Res. Commun. 87: 649-653; 1979.
- *79ZU01. Zubarev V. E., Belevskii V. N., Bugaenko, L. T. Use of spin traps for studying the mechanism of radical processes. Usp. Khim. 48: 1361-1392; 1979.
- 80BU01. Buettner G. R., Oberley L. W. The apparent production of superoxide and hydroxyl radicals by hematoporphyrin and light as seen by spin trapping. FEBS Lett. 121: 161-164; 1980.
- 80CH01. Chew V. S. F., Bolton J. R. Photochemistry of 5-methylphenazinium salts in aqueous solution. Products and quantum yield of the reaction. J. Phys. Chem. 84: 1903-1908; 1980.
- 80CH02. Chew V. S. F., Bolton J. R., Brown R. G., Porter G.

Photochemistry of 5-methylphenazinium salts in aqueous solution. 2. Optical flash photolysis and fluorescence results and a proposed mechanism. J. Phys. Chem. 84: 1909-1916; 1980.

- 80CH03. Chignell C. F., Kalyanaraman B., Mason R. P., Sik R. H. Spectroscopic studies of cutaneous photosensitizing agents-1. Spin trapping of photolysis products from sulfanilamide, 4aminobenzoic acid and related compounds. *Photochem. Photobiol.* 32: 563-571; 1980.
- 80F101. Finkelstein E., Rosen G. M., Rauckman E. J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 102: 4994-4999; 1980.
- *80F102. Finkelstein E., Rosen G. M., Rauckman E. J. Spin trapping of superoxide and hydroxyl radical: Practical aspects. Arch. Biochem. Biophys. 200: 1-16; 1980.
- *80JA01. Janzen E. G. A critical review of spin trapping in biological systems. In: Free Radicals in Biology, Vol. IV, (W. A. Pryor, ed.), pp. 115-154, Academic Press, New York (1980).
- 80JA02. Janzen E. G., Stronks H. J., Nutter D. E., Jr., Davis E. R., Blount, H. N., Poyer J. L., McCay P. B. Spin trapping azidyl(N₃'), cyanatyl(OCN'), cyanyl('CN) radicals, and chlorine atom(Cl'). Can. J. Chem. 58: 1596-1598; 1980.
- 80KA01. Kalyanaraman B., Perez-Reyes E., Mason R. P. Spintrapping and direct electron spin resonance investigations of the redox metabolism of quinon anticancer drugs. *Biochim. Biophys. Acta* 630: 119-130; 1980.
- 80KE01. Kremers W., Singh A. Electron spin resonance study of spin-trapped azide radicals in aqueous solutions. Can. J. Chem. 58: 1592-1595; 1980.
- 80L101. Lion Y. F., Kuwabara M., Riesz P. UV photolysis of aqueous solutions of aliphatic peptides. An ESR and spin-trapping study. J. Phys. Chem. 84: 3378-3384; 1980.
- 80MA01. Mason R. P., Kalyanaraman B., Trainer B. E., Eling T. E. A carbon-centered free radical intermediate in the prostaglandin synthetase oxidation of arachidonic acid. J. Biol. Chem. 255: 5019-5022; 1980.
- 80MA02. Marriott P. R., Perkins M. J., Griller D. Spin trapping for hydroxyl in water: A kinetic evaluation of two popular traps. *Can. J. Chem.* 58: 803-807; 1980.
- 80MA03. Makino K. Studies on spin-trapped radicals in gammairradiated aqueous solutions of L-isoleucine and L-leucine by high-performance liquid chromatography and ESR spectroscopy. J. Phys. Chem. 84: 1968-1974; 1980.
- 80MA04. Makino K. Studies on spin-trapped radicals in gammairradiated aqueous L-valine solutions by high-performance liquid chromatography and ESR spectroscopy. J. Phys. Chem. 84: 1016– 1019; 1980.
- 80MA05. Makino K. Studies on spin-trapped radicals in gammairradiated aqueous solutions of 2-methyl-2-nitrosopropane by highperformance liquid chromatography and ESR spectroscopy. J. Phys. Chem. 84: 1012-1015; 1980.
- 80MA06. Makino K., Suzuki N., Moriya F., Rokushika S., Hatano H. Spin-trap-radical chromatography of spin adducts produced from L-valine by gamma-irradiation. Anal. Lett. 13: 301-309; 1980.
- 80MA07. Makino K., Suzuki N., Moriya F., Rokushika S., Hatano H. Cautionary note for use of 2-methyl-2-nitrosopropane as spin trap. Analytical Lett. 13(A4): 311-317; 1980.
- *80MC01. McCay P. B., Noguchi T., Fong K.-L., Lai E. K., Poyer J. L. Production of radicals from enzyme systems and the use of spin traps. In: *Free Radicals in Biology* (W. A. Pryor, ed.), Vol. IV, pp. 155–186, Academic Press, New York (1980).
- 80M101. Minegishi A., Bergene R., Riesz P. E.S.R. of spin-trapped radicals in aqueous solutions of deuterated amino acids and alcohols. Int. J. Radiat. Biol. 38: 395-415; 1980.
- 80MI02. Minegishi A., Bergene R., Riesz P. E.S.R. of spin-trapped radicals in gamma-irradiated polycrystalline amino acids, N-acetyl amino acids and dipeptides. Int. J. Radiat. Biol. 38: 627-650; 1980.
- 80M001. Moriya F., Makino K., Suzuki N., Rokushika S., Hatano H. Studies on spin-trapped radicals in gamma-irradiated aqueous solutions of glycine and L-alanine by high-performance liquid

chromatography and ESR spectroscopy. J. Phys. Chem. 84: 3085-3090; 1980.

- 80N101. Niki E., Ohto N., Kanauchi T., Kamiya Y. Hydrogen atom abstraction from polypropylene and polystyrene by *t*-butoxy radical. Site of radical attack studied by spin trapping. *Eur. Polym.* J. 16: 559-563; 1980.
- *800K01. Okolow-Zubkowska M. J., Hill H. A. O. Spin trapping of superoxide and hydroxyl radicals produced by stimulated human neutrophils. In: Biological and Clinical Aspects of Superoxide and Superoxide Dismutases. (W. H. Bannister and J. V. Bannister, eds.), pp. 201-210, Elsevier/North Holland, New York (1980).
- 80PA01. Patton S. E., Rosen G. M., Rauckman E. J. Superoxide production by purified hamster hepatic nuclei. *Mol. Pharmacol.* 18: 588-593; 1980.
- *80PE01. Perkins M. J. Spin trapping. Advances in Physical Organic Chemistry 17: 1-64; 1980.
- 80PE02. Percz-Reyes E., Kalyanaraman B., Mason R. P. The reductive metabolism of metronidazole and ronidazole by aerobic liver microsomes. *Mol. Pharmacol.* 17: 239-244; 1980.
- 80P001. Poyer J. L., McCay P. B., Lai E. K., Janzen E. G., Davis E. R. Confirmation of assignment of the trichloromethyl radical spin adduct detected by spin trapping during ¹³C-carbon tetrachloride metabolism *in vitro* and *in vivo*. Biochem. Biophys. Res. Commun. 94: 1154-1160; 1980.
- *80RE01. Rehorek D. Spin-Trapping—eine Methode zum Nachweis kurzlebiger paramagnetischer Reaktionsprodukte. Z. Chem. 20: 325-331; 1980.
- 80RO01. Rosen G. M., Rauckman E. J. Spin trapping of the primary radical involved in the activation of the carcinogen N-hydroxy-2-acetylaminofluorene by cumene hydrogeroxide-hematin. *Mol. Pharmacol.* 17: 233-238; 1980.
- *80R002. Rosen G. M., Rauckman E. J., Finkelstein E. J. Spin trapping of radical species involved in the propagation of lipid peroxidation. In: Autoxidation in Food and Biological Systems (M. G. Simic and M. Karal, eds.), pp. 71-88, Plenum Press, New York (1980).
- 80SA01. Sanderson D. G., Chedekel M. R. Spin trapping of the superoxide radical by 4-(N-methylpyridinium) *t*-butyl nitrone. *Photochem. Photobiol.* 32: 573-576; 1980.
- *80SC01. Schaich K. M., Borg D. C. EPR studies in autoxidation. In: Autoxidation in Food and Biological Systems (M. G. Simic and M. Karel, eds.), pp. 45-70, Plenum Press, New York (1980).
- 80SU01. Sugiura Y. Bleomycin-iron complexes. Electron spin resonance study, ligand effect, and implication for action of mechanism. J. Am. Chem. Soc. 102: 5208-5215; 1980.
- 80TO01. Tomasi A., Albano E., Lott K. A. K., Slater T. F. Spin trapping of free radical products of CCl₄ activation using pulse radiolysis and high energy radiation procedures. *FEBS Lett.* 122: 303-306; 1980.
- 80VA01. van Ginkel G., Raison J. K. Light-induced formation of O₂⁻⁻ oxygen radicals in systems containing chlorophyll. Photochem. Photobiol. 32: 793-798; 1980.
- 81AR01. Arthur J. R., Boyne R., Hill H. A. O., Okolow-Zubkowska M. J. The production of oxygen-derived radicals by neutrophils from sclenium-deficient cattle. FEBS Lett. 135: 187-190; 1981.
- 81AU01. Augusto O., Ortiz de Montellano P. R., Quintanilha A. Spin-trapping of free radicals formed during microsomal metabolism of ethylhydrazine and acetylhydrazine. Biochem. Biophys. Res. Commun. 101: 1324-1330; 1981.
- 81BÖ01. Bösterling B., Trudell J. R. Spin trap evidence for ptoduction of superoxide radical anions by purified NADPH-cytochrome P-450 reductase. Biochem. Biophys. Res. Commun. 98: 569-575; 1981.
- 81CH01. Chignell C. F., Kalyanaraman B., Sik R. H., Mason R. P. Spectroscopic studies of cutaneous photosensitizing agents-II. Spin trapping of photolysis products from sulfanilamide and 4-aminobenzoic acid using 5,5-dimethyl-1-pyrroline-1-oxide. Photochem. Photobiol. 34: 147-156; 1981.
- 81CO01. Coxon J. M., Gilbert B. C., Norman R. O. C. Electron

spin resonance studies of spin trapping. On the role of hydroxylamines and an oxaziridine in the formation of nitroxides following addition of hydroxyalkyl radicals to N-1-butyl-alphaphenylnitrone. J. Chem. Soc. Perkin Trans. II 379-381; 1981.

- 81GR01. Grover T. A., Piette L. H. Influence of flavin addition and removal on the formation of superoxide by NADPH-cytochrome P-450 reductase: A spin trap study. Arch. Biochem. Biophys. 212: 105-114; 1981.
- 81HI01. Hill H. A. O., Thornalley P. J. Phenyl radical production during the oxidation of phenylhydrazine and in phenylhydrazineinduced haemolysis. FEBS Lett. 125: 235-238; 1981.
- *81H102. Hill H. A. O., Okolow-Zubkowska M. J. The exploitation of molecular oxygen by human neutrophiles: Spin-trapping of radicals produced during the respiratory burst. In: Oxygen and Life, proceedings of the Second Priestley Conference, pp. 98-106, Royal Society of Chemistry, London (1981).
- 81JA01. Janzen E. G., Shetty R. V., Kunanec S. M. Spin trapping chemistry of 3,3,5,5-tetramethylpyrroline-N-oxide: An improved cyclic spin trap. Can. J. Chem. 59: 756-758; 1981.
- 81JA02. Junzen E. G., Stronks H. J. Assignment of the ESR spectrum of the cyanyl radical spin adduct of phenyl tert-butyl nitrone. J. Phys. Chem. 85: 3952-3954; 1981.
- 81KA01. Kaur H., Leung K. H. W., Perkins M. J. A water-soluble, nitroso-aromatic spin-trap. J.C.S. Chem. Comm. 142-143; 1981.
- 81K101. Kirino Y., Ohkuma T., Kwan T. Spin trapping with 5,5dimethylpyrroline-N-oxide in aqueous solution. Chem. Pharm. Bull. 29: 29-34; 1981.
- 81KU01. Kuwabara M., Lion Y., Riesz P. E.S.R. of spin-trapped radicals from sugars. Reactions of hydroxyl radicals in aqueous solutions and gamma-radiolysis in the polycrystalline state. Int. J. Radiat. Biol. 39: 451-455; 1981.
- 81KU02. Kuwabara M., Lion Y., Riesz P. E.S.R. of spin-trapped radicals in gamma-irradiated polycrystalline nucleic acid constituents and their halogenated derivatives. Int. J. Radiat. Biol. 39: 465-490; 1981.
- 81KU03. Kuwabara M., Lion Y., Riesz P. E.S.R. of spin-trapped radicals in aqueous solutions of 5-halo derivatives of nucleic acids and their constituents. Reactions of hydrated electrons, hydroxyl radicals and U.V. photolysis. Int. J. Radiat. Biol. 39: 491-514; 1981.
- 81L101. Lion Y., Kuwabara M., Riesz P. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-I. Phenylalanine and related compounds. *Photochem. Photobiol.* 34: 297-307; 1981.
- 81LO01. Lown J. W., Chen H.-H. Evidence for the generation of free hydroxyl radicals from certain quinone antitumor antibiotics upon reductive activation in solution. Can. J. Chem. 59: 390-395; 1981.
- 81MA01. Makino K., Suzuki N., Moriya F., Rokushika S., Hatano H. A fundamental study on aqueous solutions of 2-methyl-2nitrosopropane as a spin trap. *Radiation Res*. **86**: 294-310; 1981.
- 81MO01. Mossoba M. M., Rosenthal I., Riesz P. Hydrogen-deuterium exchange in gamma-irradiated polycrystalline DL-alanine: A spin-trapping and E.S.R. study. Int. J. Radiat. Biol. 40: 397-411; 1981.
- 81MO02. Mossoba M. M., Rosenthal I., Riesz P. E.S.R. and spintrapping studies of dihydropyrimidines. Gamma-radiolysis in polycrystalline state and UV photolysis in aqueous solution. Int. J. Radiat. Biol. 40: 541-552; 1981.
- 81NO01. Nohl H., Jordan W., Hegner D. Identification of free hydroxyl radicals in respiring rat heart mitochondria by spin trapping with the nitrone DMPO. FEBS Lett. 123: 241-244; 1981.
- 81PO01. Poyer J. L., McCay P. B., Weddle C. C., Downs P. E. In vivo spin-trapping of radicals formed during halothane metabolism. Biochem. Pharmacol. 30: 1517-1519; 1981.
- 81PR01. Pryor W. A. Autoxidation in biological systems. A novel low-temperature method for spin trapping and the mechanism of reaction of ozone with polyunsaturated fatty acids. In: Oxygen and Oxy-Radicals in Chemistry and Biology (M. A. J. Rodgers

and E. L. Powers, eds.), pp. 133-139, Academic Press, Inc., New York (1981).

- 81PR02. Pryor W. A., Govindan C. K. Oxygen-atom-transfer reactions from a carbonyl oxide (produced from a 1,2,3-trioxolane) to electron-deficient unsaturated compounds. J. Am. Chem. Soc. 103: 7681-7682; 1981.
- 81PR03. Pryor W. A., Prier D. G., Church D. F. Radical production from the interaction of ozone and PUFA as demonstrated by electron spin resonance spin-trapping techniques. *Environ. Res.* 24: 42-52; 1981.
- 81RE01. Rehorek D., Winkler W., Wagener R., Hennig H. Photocatalytic systems XLVI. The photoinduced decomposition of tributylstannyl Chromate(VI) as studied by ESR spin trapping. *Inorg. Chim. Acta* 64: L7-L9; 1981.
- 81RO01. Rosen G. M., Rauckman E. J. Spin trapping of free radicals during hepatic microsomal lipid peroxidation. Proc. Natl. Acad. Sci. USA 78: 7346-7349; 1981.
- *81RO02. Rosen G. M., Rauckman E. J. The spin trapping of biologically generated free radicals. In: Oxygen and Oxy-Radicals in Chemistry and Biology (M. A. J. Rodgers and E. L. Powers, eds.), pp. 97-108, Academic Press, Inc., New York (1981).
- 81RO03. Rosenthal I., Mossoba M. M., Riesz P. Dibenzoyl, peroxide induced photodecarboxylation of amino acids and peptides. A spin-trapping study. J. Phys. Chem. 85: 2398-2403; 1981.
- 81RO04. Rosenthal I., Mossoba M. M., Riesz P. Photochemistry of pyrimidine bases as studied by E.S.R. and spin-trapping. Int. J. Radiat. Biol. 40: 385-395; 1981.
- 81RO05. Rosenthal I., Mossoba M. M., Riesz P. Sonolysis of perhalomethane as studied by EPR and spin trapping. J. Magn. Reson. 45: 359-361; 1981.
- 81SM01. Smith F. L., Floyd R. A., Carpenter M. P. Prostaglandin synthetase-dependent spin trapped free radicals. In: Oxygen and Oxy-Radicals in Chemistry and Biology (M. A. J. Rodgers and E. L. Powers, eds.), pp. 743-745, Academic Press, Inc., New York (1981).
- 81SU01. Suzuki N., Makino K., Moriya'F., Rokushika S., Hatano H. Studies on spin-trapped radicals in gamma-irradiated aqueous solutions of L-proline and trans-4-hydroxy-L-proline by highperformance liquid chromatography and ESR spectroscopy. J. Phys. Chem. 85: 263-268; 1981.
- 81TA01. Taniguchi, H., Aoshima H. Radical chromatography of spin adducts produced from gamma-irradiated linoleic acid in nonaqueous solution. *Chemistry Lett.* 1599-1602; 1981.
- 81WA01. Walter T. H., McIntire G. L., Bancroft E. E., Davis E. R., Gierasch L. M., Blount H. N. Interfacial spin trapping in model membrane systems. *Biochem. Biophys. Res. Commun.* 102: 1350-1357; 1981.
- 82AL01. Albano E., Lott K. A. K., Slater T. F., Stier A., Symons M.C.R., Tomasi A. Spin-trapping studies on the free-radical products formed by metabolic activation of carbon tetrachloride in rat liver microsomal fractions isolated hepatocytes and in vivo in the rat. *Biochem. J.* 204: 593-603; 1982.
- 82AU01. Aurian-Blajeni B., Halmann M., Manassen J. Radical generation during the illumination of aqueous suspensions of tungsten oxide in the presence of methanol, sodium formate and sodium carbonate. Detection by spin trapping. *Photochem. Photobiol.* 35: 157-162; 1982.
- 82AU02. Augusto O., Beilan H. S., Ortiz de Montellano P. R. The catalytic mechanism of cytrochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 257: 11288-11295; 1982.
- 82AU03. Augusto O., Kunze K. L., de Montellano P. R. Oritz N-Phenylprotoporphyrin IX formation in the hemoglobin-phenylhydrazine reaction. Evidence for a protein-stabilized iron-phenyl intermediate. J. Biol. Chem. 257: 6231-6241; 1982.
- *82AU04. Aurich H. G. Nitroxides as reaction intermediates. Can. J. Chem. 60: 1414-1420; 1982.
- 82BA01. Bannister J. V., Bellavite P., Serra M. C., Thornailey P. J., Rossi F. An EPR study of the production of superoxide rad-

icals by neutrophil NADPH oxidase. FEBS Lett. 145: 323-326; 1982.

- 82BA02. Bannister J. V., Bannister W. H., Hill H. A. O., Thornalley P. J. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin. Biochim. Biophys. Acta 715: 116-120; 1982.
- 82BE01. Bevington J. C., Fridd P. F., Tabner B. J. An electron spin resonance study of some trapped primary radicals. J. Chem. Soc. Perkin Trans. II 1389-1391; 1982.
- *82BU01. Bucttner G. R. The spin trapping of superoxide and hydroxyl radicals. In: Superoxide Dismutase (L.W. Oberley, ed.), Vol. 2, pp. 63-81, CRC Press, Boca Raton (1982).
- 82ES01. Esnouf M. P., Gainey A., Hill H. A. O., Thornalley P. J. The carboxylation of preprothrombin. In: The Biology of Copper. (J. Sorenson, ed.), pp. 209-220, Humana Press, New Jersey (1982)
- 82ET01. Ettinger K. V., Forrester A. R., Hunter C. H. Lyoluminescence and spin trapping. Can. J. Chem. 60: 1549-1559; 1982.
- 82FI01. Finkelstein E., Rosen G. M., Rauckman E. J. Production of hydroxyl radical by decomposition of superoxide spin trapped adducts. Mol. Pharmcol. 21: 262-265; 1982.
- 82FL01. Floyd R. A. Observations on nitroxyl free radicals in arylamine carcinogenesis and on spin-trapping hydroxyl free radicals. Can. J. Chem. 60: 1577-1586; 1982.
- 82FO01. Forney L. J., Reddy C. A., Ting M., Aust S. D. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 257: 11455-11462; 1982.
- 82FU01. Fujii K., Miki N., Kanashiro M., Miura R., Sugiyama T., Morio M., Yamano T., Miyake Y. A spin trap study on anacrobic dehalogenation of halothane by a reconstituted liver microsomal cytochrome P-450 enzyme system. J. Biochem. 91: 415–418; 1982.
- *82G101. Gilbert B. C., Norman R. O. C. Radical reactions in aqueous solution: Use of aci-anion of nitromethanc as a spin trap. Can. J. Chem. 60: 1379-1391; 1982.
- 82GR01. Gray P. J., Phillips D. R., Wedd A. G. Photosensitized degradation of DNA by daunomycin. Photochem. Photobiol. 36: 49-57; 1982.
- *82GR02. Griffin B. W. Use of spin traps to elucidate radical mechanisms of oxidations by hydroperoxides catalyzed by hemeprotcins. Can. J. Chem. 60: 1463-1473; 1982.
- 82HA01. Haire D. L., Janzen E. G. Synthesis and spin trapping kinetics of new alkyl substituted cyclic nitrones. Can. J. Chem. 60: 1514-1522; 1982.
- 82HA02. Harbour J. R., Issler S. L. Involvement of the azide radical in the quenching of singlet oxygen by azide anion in water. J. Am. Chem. Soc. 104: 903-905; 1982.
- 82HE01. Hedrick W. R., Webb M. D., Zimbrick J. D. Spin trapping of reactive uracilyl radicals produced by ionizing radiation in aqueous solutions. Int. J. Radiat. Biol. 41: 435–442; 1982.
- 82H101. Hill H. A. O., Thornalley P. J. The oxidative ring opening of the cyclic nitrone spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO): Free radical involvement. Inorg. Chim. Acta 67: L35-L36: 1982
- 82HI02. Hill H. A. O., Thornalley P. J. Free radical production during phenylhydrazine-induced hemolysis. Can. J. Chem. 60: 1528-1531; 1982.
- 82JA01. Janzen E. G., Coulter G. A., Ochler U. M., Bergsma J. P. Solvent effects on the nitrogen and B-hydrogen hyperfine splitting constants of aminoxyl radicals obtained in spin trapping experiments. Can. J. Chem. 40: 2725-2733; 1982.
- *82JA02. Janzen E. G., Davis E. R. Detection of free radicals by spin-trapping using the nitroxyl method. In: Free Radicals and Cancer (R. A. Floyd, ed.), pp. 397-422, Marcel Dekker, Inc., New York (1982).
- *82KA01. Kalyanaraman B. Detection of toxic free radicals in biology and medicine. In: Reviews in Biochemical Toxicology Vol. 4, (E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), pp. 73--139, Elsevier, New York (1982).
- 82KA02. Kalyanaraman B., Felix C. C., Sealy R. C. Photoionization of melanin precursors: An electron spin resonance inves-

tigation using the spin trap 5.5-dimethyl-1-pyrroline-1-oxide(DMPO). Photochem. Photobiol. 36: 5-12; 1982.

- 82KO01. Komiyama T., Kikuchi T., Sugiura Y. Generation of hydroxyl radical by the anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase. Biochem. Pharmacol. 31: 3651-3656; 1982.
- 82KO02. Kotake Y., Kuwata K. Formation of intramolecular hydrogen bond in hydroxy-substituted nitroxide radicals as evidenced by electron spin resonance. Bull. Chem. Soc. Jpn. 55: 3686-3689; 1982.
- *82KO03. Konaka R., Terabe S., Mizuta T., Sakata S. Spin trapping by use of nitrosodurene and its derivatives. Can. J. Chem. **60**: 1532-1541; 1982.
- 82KO04. Kotake Y., Kuwata K. Electron spin resonance and electron nuclear double resonance study of diastereometric nitroxyl radicals produced by spin trapping. Can. J. Chem. 60: 1610-1613; 1982.
- 82KO05. Kono Y., Sugiura Y. Electron spin resonance studies on the oxidation of rifamycin SV catalyzed by metal ions. J. Biochem. 91: 397-401; 1982.
- 82KR01. Kremers W., Koroll G. W., Singh A. Spin trapping of the azide radical with nitroso compounds. Can. J. Chem. 60: 1597; 1982.
- 82LE01. Legge R. L., Thompson J. E., Baker J. E. Free radicalmediated formation of ethylene from 1-aminocyclopropane-1carboxylic acid: A spin trap study. Plant Cell Physiol. 23: 171-177; 1982.
- 82LI01. Lion Y., Kuwabara M., Riesz P. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides, tripeptides and polypeptides in aqueous solutions-II. Tyrosine and related compounds, Photochem. Photobiol. 35: 43-52; 1982.
- 82L102. Lion Y., Kuwabara M., Riesz P. Spin-trapping and ESR studies of the direct photolysis of aromatic amino acids, dipeptides and polypeptides in aqueous solutions-III. Tryptophan and related compounds. Photochem. Photobiol. 35: 53-62; 1982.
- 82L103. Lion Y., Decuyper J., Van de Vorst A. Photolysis of chiorpromazine: Hydroxyl radical detection using 2-methyl-2-nitrosopropane as a spin trap. J. Photochem. 20: 169-174; 1982.
- 82MA01. Makino K., Mossoba M. M., Riesz P. Chemical effects of ultrasound on aqueous solutions. Evidence for 'OH and 'H by spin trapping. J. Am. Chem. Soc. 104: 3537–3539; 1982.
- 82MA02. Maquire J. H., Kellogg III E. W., Packer L. Protection against free radical formation by protein bound iron. Toxicology Len. 14; 27-34; 1982.
- *82MA03. Makino K., Riesz P. Electron spin resonance of spin trapped radicals in gamma-irradiated polycrystalline dipeptides. Chromatographic separation of radicals. Can. J. Chem. 60: 1480-1485; 1982.
- 82MA04. Makino K., Riesz P. E.S.R. of spin-trapped radicals in gamma-irradiated polycrystalline amino acids. Chromatographic separation of radicals. Int. J. Radiat. Biol. 41: 615-624; 1982.
- *82MA05. Mason R. P., Chignell C. F. Free radicals in pharmacology and toxicology-Selected topics. Pharmacol. Rev. 33: 189-211; 1982.
- *82MA06. Maillard P., Giannotti C. Utilsation des pièges a radicaux en vue de mettre en évidence des intermédiaires dans la photolyse de complexes contenant une liaison Co(III)-C. Can. J. Chem. 60: 1402-1413; 1982.
- *82MA07. Mason R. P., Harrelson W. G., Kalyanaraman B., Mottley C., Peterson F. J., Holtzman J. L. Free radical metabolites of chemical carcinogens. In: Free Radicals, Lipid Peroxidation and Cancer (D. C. H. McBrien and T. F. Slater, eds.), pp. 377-400, Academic Press, London (1982).
- *82MC01. McCay P. B., King M. M., Poyer J. L., Lai E. K. An update on antioxidant theory: Spin trapping of trichloromethyl radicals in vivo. In: Vitamin E: Biochemical, hematological and clinical aspects. Annals New York Academy of Sciences, Vol. 393, (B. Lubin and L. J. Machlin, eds.), pp. 23-31; 1982. 82MO01. Mottley C., Mason R. P., Chignell C. F., Sivarajah K.,
- Eling T. E. The formation of sulfur trioxide radical anion during

the prostaglandin hydroperoxidase-catalyzed oxidation of bisulfite (hydrated sulfur dioxide). J. Biol. Chem. 257: 5050-5055; 1982.

- 82MO02. Mossoba M. M., Makino K., Riesz P. Photoionization of aromatic amino acids in aqueous solutions. A spin-trapping and electron spin resonance study. J. Phys. Chem. 86: 3478– 3483; 1982.
- 82M003. Moriya F., Makino K., Suzuki N., Rokushika S., Hatano H. Studies on spin-trapped radicals in gamma-irradiated aqueous solutions of L-alanylglycine and L-alanyl-L-alanine by high-performance liquid chromatography and ESR spectroscopy. J. Am. Chem. Soc. 104: 830-836; 1982.
- 82MO04. Mossoba M. M., Rosenthal I., Riesz P. Electron spin resonance of spin-trapped radicals of amines and polyamines. Hydroxyl radical reactions in aqueous solutions and gammaradiolysis in the solid state. Can. J. Chem. 60: 1493-1500; 1982.
- 82N101. Niki E., Tsuchiya J., Tanimura R., Kamiya Y. Regeneration of Vitamin E from alpha-chromanoxyl radical by glutathione and vitamin C. Chemistry Lett. 789-792; 1982.
- 82OE01. Ochler U. M., Janzen E. G. Simulation of isotropic electron spin resonance spectra: a transportable basic program. Can. J. Chem. 60: 1542-1548; 1982.
- 82PR01. Pryor W. A., Govindan C. K., Church D. F. Mechanism of ozonolysis of acetylenes: Evidence for a free-radical pathway for the decomposition of intermediates. J. Am. Chem. Soc. 104: 7563-7566; 1982.
- 82RE01. Rehorek D., Winkler W., Wagener R., Hennig H. Ueber die Photoreduktion von Tetrabutylammoniumdichromat. Z. Chem. 22: 112-113; 1982.
- 82RE02. Rehorek D., Janzen E. G., Stronks H. J. Spin-Trapping von Hydoxylradikalen bei der Photolyse von Octacyanomolybdat(V) in Wasser. Z. Chem. 22: 64; 1982.
- 82RE03. Rehorek D., Puaux J. P. Ueber die Bildung von Radikalen bei der Photolyse von Uranylsalzen in aliphatischen Carbonsaeuren. Radiochem. Radioanal. Letters 52: 29-36; 1982.
- *82RE04. Rehorek D., Henning H. Spin trapping in photochemistry of coordination compounds. Can. J. Chem. 60: 1565-1573; 1982.
- *82RI01. Riesz P., Rosenthal I. Photochemistry of protein and nucleic acid constituents: Electron spin resonance and spin-trapping with 2-methyl-2-nitrosopropane. Can. J. Chem. 60: 1474-1479; 1982.
- 82RO01. Rodriguez L. O., Hecht S. M. Iron(III)-bleomycin. Biochemical and spectral properties in the presence of radical scavengers. Biochem. Biophys. Res. Commun. 104: 1470-1476; 1982.
- 82RO02. Rosen G. M., Rauckman E. J. Carbon tetrachloride-induced peroxidation: A spin trapping study. *Toxicol. Lett.* 10: 337-344; 1982.
- 82RO03. Rosen G. M., Kloss M. W., Rauckman E. J. Initiation of in vitro lipid peroxidation by N-hydroxynorcocaine and norcocaine nitroxide. *Mol. Pharmacol.* 22: 529-531; 1982.
- 82RO04. Rosenthal I., Mossoba M. M., Riesz P. Photoinduced reactions of dibenzoyl peroxide as studied by EPR and spintrapping. J. Magn. Reson. 47: 200-208; 1982.
- 82ROO5. Rosenthal I., Mossoba M. M., Riesz P. Spin-trapping with 2-methyl-2-nitrosopropane: photochemistry of carbonyl-containing compounds. Methyl radical formation from dimethyl sulfoxide. Can. J. Chem. 50: 1486-1492; 1982.
- 82SA01. Saez G., Thornalley P. J., Hill H. A. O., Hems R., Bannister J. V. The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochim. Biophys. Acta 719: 24-31; 1982.
- 82SE01. Searle A. J. F., Tomasi A. Hydroxyl free radical production in iron-cysteine solutions and protection by zinc. J. Inorg. Biochem. 17: 161-166; 1982.
- 82SI01. Sinha B. K., Motten A. G. Oxidative metabolism of hydralazine. Evidence for nitrogen centered radicals formation. Biochem. Biophys. Res. Commun. 105: 1044-1051; 1982.
- 82SP01. Spalletta R. A., Bernhard W. A. Spin-trapping free radicals by solvating X-irradiated crystalline pyrimidines. *Radiat. Res.* 89: 11-24; 1982.
- 82SY01. Symons M. C. R., Albano E., Slater T. F., Tomasi A.

Radiolysis of tetrachloromethane. J. Chem. Soc. Faraday Trans. 178: 2205-2214; 1982.

- 82TE01. Tero-Kubota S., Ikegami Y., Kurokawa T., Sasaki R., Sugioka K., Nakano M. Generation of free radicals and initiation of radical reactions in nitrones-Fe²⁺-phosphate buffer systems. *Biochem. Biophys. Res. Commun.* 108: 1025-1031; 1982.
- 82TH01. Thornalley P. J., Sarchet A. W., Hill H. A. O., Bannister J. V., Bannister W. H. The inhibition of manganese superoxide dismutase by cacodylate. *Inorg. Chim. Acta* 67: 75-78; 1982.
- 82WA01. Watanabe T., Yoshida M., Fujiwara S., Abe K., Onoe A., Hirota M., Igarashi S. Spin trapping of hydroxyl radical in the troposphere for determination by electron spin resonance and gas chromatography/mass spectrometry. Anal. Chem. 54: 2470-2474; 1982.
- 82WA02. Walter T. H., Bancroft E. E., McIntire G. L., Davis E. R., Gierasch L. M., Blount H. N., Stronks H. J., Janzen E. G. Spin trapping in heterogeneous electron transfer processes. Can. J. Chem. 60: 1621-1623; 1982.
- 83AZOJ. Azizova O. A., Osipov A. N., Zubarev V. E., Yakhyaev A.V., Savov V. M., Kagan V. E., Vladimirov Y. A. Spin trapping study on the nature of radicals generated by X-radiolysis and peroxidation of linolenic acid. Studia Biophys. 96: 149-154; 1983.
- 83BA01. Bannister J. V., Thornalley P. J. The production of hydroxyl radicals by adriamycin in red blood cells. *FEBS Lett.* 157: 170-172; 1983.
- 83BA02. Barber M. J., Rosen G. M., Siegel L. M., Rauckman E. J. Evidence for formation of superoxide and formate radicals in Methanobacterium formicicum. J. Bacteriol. 153: 1282-1286; 1983.
- 83BA03. Bannister W. H., Bannister J. V., Searle A. J. F., Thornalley P. J. The reaction of superoxide radicals with metal picolinate complexes. *Inorg. Chim. Acta* 78: 139-142; 1983.
- 83BU01. Buettner G. R., Doherty T. P., Patterson L. K. The kinetics of the reaction of superoxide radical with Fe(III) complexes of EDTA, DETAPAC and HEDTA. FEBS Lett. 158: 143-146; 1983.
- 83CA01. Carmichael A. J., Mossoba M. M., Riesz P. Photogeneration of superoxide by adriantycin and daunomycin. An electron spin resonance and spin trapping study. FEBS Lett. 164: 401-405; 1983.
- 83CA02. Castelhano A. L., Perkins M. J., Griller D. Spin trapping of hydroxyl in water: Decay kinetics for the 'OH and CO₂⁻ adducts to 5,5-dimethyl-1-pyrroline-N-oxide. Can. J. Chem. 61: 298-299; 1983.
- 83CO01. Cook M. D., Ng L. L., Roberts B. P. Spin-trapping of alpha-azidoalkyl radicals. *Tetrahedron Lett.* 24: 3761-3764; 1983.
- 83DA01. Davies M. J., Gilbert B. C., Norman R. O. C. Electron spin resonance studies. Part 64. The Hydroxyl radical-induced decarboxylation of methionine and some related compounds. J. Chem. Soc. Perkin Trans. II 731-738; 1983.
- 83DA02. Davis G., Thornalley P. J. Free radical production from the aerobic oxidation of reduced pyridine nucleotides catalysed by phenazine derivatives. *Biochim. Biophys. Acta* 724: 456-464; 1983.
- 83DE01. Decuyper J., Piette J., Van de Vorst, A. Activated oxygen species produced by photoexcited furocoumarin derivatives. Arch. Int. Physiol. Biochim. 91: 471-476; 1983.
- 83D001. Docampo R., Moreno S. N. J., Mason R. P. Generation of free radical metabolites and superoxide anion by the calcium indicators arsenazo III, antipyrylazo III, and Murexide in rat liver microsomes. J. Biol. Chem. 258: 14920-14925; 1983.
- 83D002. Docampo R., Casellas A. M., Madeira E. D., Cardoni R. L., Moreno S. N. J., Mason R. P. Oxygen-derived radicals from *Trypanosoma cruzi*-stimulated human neutrophils. *FEBS Lett.* 155: 25-30; 1983.
- 83FE01. Felix C. C., Reszka K., Sealy R. C. Free radicals from photoreduction of hematoporphyrin in aqueous solution. *Pho*tochem. Photobiol. 37: 141-147; 1983.
- 83FL01. Floyd R. A. Hydroxyl free-radical spin-adduct in rat brain synaptosomes observations on the reduction of the nitroxide. Biochim. Biophys. Acta 756: 204-216; 1983.

- 83FL02. Floyd R. A., Lewis C. A. Hydroxyl free radical formation from hydrogen peroxide by ferrous iron-nucleotide complexes. *Biochemistry* 22: 2645-2649; 1983.
- 83FL03. Floyd R. A. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyse hydroxyl free radical formation from hydrogen peroxide. Arch. Biochem. Biophys. 225: 263-270; 1983.
- 83GR01. Graceffa P. Spin labeling of protein sulfhydryl groups by spin trapping a sulfur radical: Application to Bovine serum albumin and myosin. Arch. Biochem. Biophys. 225: 802-808; 1983.
- 83GR02. Grimes H. D., Perkins K. K., Boss W. F. Ozone degrades into hydroxyl radical under physiological conditions—A spin trapping study. *Plant Physiol.* 72: 1016-1020; 1983.
- 83GU01. Gutierrez P. L., Gee M. V., Bachur N. R. Kinetics of anthracycline antibiotic free radical formation and reductive glycosidase activity. Arch. Biochem. Biophys. 223: 68-75; 1983.
- 83HA01. Hawley D. A., Kleinhans F. W., Biesecker J. L. Determination of alternate pathway complement kinetics by electron spin resonance spectroscopy. Am. J. Clin. Pathol. 79: 673-677; 1983.
- 83H101. Hill H. A. O., Thornalley P. J. The effect of spin traps on phenylhydrazine-induced haemolysis. *Biochim. Biophys. Acta* 762: 44-51; 1983.
- 83HU01. Hume D. A., Gordon S., Thornalley P. J., Bannister J. V. The production of oxygen-centered radicals by *Bascillus-cal-mette-guerin*-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate. *Biochim. Biophys. Acta* 763: 245-250; 1983.
- 83IT01. Ito O., Mutsudu M. Kinetic study for spin-trapping reactions of thiyl radicals with nitroso compounds. J. Am. Chem. Soc. 105: 1937-1940; 1983.
- 83KA01. Kalyanaraman B., Mottley C., Mason R. P. A direct electron spin resonance and spin-trapping investigation of peroxyl free radical formation by hematin/hydroperoxide systems. J. Biol. Chem. 258: 3855-3858; 1983.
- 83KU01. Kubow S., Dubose Jr. C. M., Janzen E. G., Carlson J. R., Bray T. M. The spin trapping of enzymatically and chemically catalyzed free radicals from indole compounds. *Biochem. Biophys. Res. Commun.* 114: 168-174; 1983.
- 83L101. Lion Y., Denis G., Mossoba M. M., Riesz P. E.S.R. of spin-trapped radicals in gamma-irradiated polycrystalline DLalanine. A quantitative determination of radical yield. Int. J. Radiat. Biol. 43: 71-83; 1983.
- 83MA01. Makino K., Mossoba M. M., Riesz P. Chemical effects of ultrasound on aqueous solution. Formation of hydroxyl radicals and hydrogen atoms. J. Phys. Chem. 87: 1369-1377; 1983.
- 83MA02. Maldotti A., Bartocci C., Amadelli R., Carassiti V. An ESR spin trapping investigation on the photoreduction of chlorohemin in mixed solvents. *Inorg. Chim. Acta* 74: 275-278; 1983.
- 83MA03. Makino K., Mossoba M. M., Riesz P. ESR and spintrapping study of gamma-irradiated aqueous hydantoin solutions. Keto-enol equilibrium and post-radiolysis growth. *Radiation Res.* **95**: 519-529; 1983.
- 83MA04. Makino K., Mossoba M. M., Riesz P. Electron spin resonance of spin-trapped radicals in gamma irradiated aqueous uracil solutions. Chromatographic separation of radicals. J. Phys. Chem. 87: 1074-1080; 1983.
- 83MA05. Makino K., Mossoba M. M., Riesz P. Formation of 'OH and 'H in aqueous solutions by ultrasound using clinical equipment. *Radiation Res.* 96: 416-421; 1983.
- 83MC01. McRae D. G., Thompson J. E. Senescence-dependent changes in superoxide aniop production by illuminated chloroplasts from bean leaves. *Planta* 158: 185-193; 1983.
- 83MO01. Motohashi N., Mori I. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin. FEBS Lett. 157: 197-199; 1983.
- 83N101. Niki E., Yokoi S., Tsuchiya J., Kamiya Y. Spin trapping of peroxy radicals by phenyl-N-(tert-butyl)nitrone and methyl-N-durylnitrone. J. Am. Chem. Soc. 105: 1498-1503; 1983.
- 83NO01. Nohl H., Jordan W. OH' -generation by adriamycin semiquinone and H₂O₂; an explanation for the cardiotoxicity of

anthracycline antibiotics. Biochem. Biophys. Res. Commun. 114: 197-205; 1983.

- 83OR01. Ortiz de Montellano P. R., Augusto O., Viola F., Kunze K.L. Carbon radicals in the metabolism of alkyl hydrazines. J. Biol. Chem. 258: 8623-8629; 1983.
- 83PR01. Pryor W. A., Prier D. G., Church D. F. Electron-spin resonance study of mainstream and sidestream cigarette smoke: Nature of the free radicals in gas-phase smoke and in cigarette tar. Environ. Health Perspective 47: 345-355; 1983.
- 83PR02. Pryor W. A., Prier D. G., Church D. F. Detection of free radicals from low-temperature ozone-olefin reactions by ESR spin trapping: Evidence that the radical precursor is a trioxide. J. Am. Chem. Soc. 105: 2883-2888; 1983.
- 83RE01. Reszka K., Chignell C. F. Spectroscopic studies of cutaneous photosensitizing agents-IV. The photolysis of benoxaprofen, an anti-inflammatory drug with phototoxic properties. *Pho*tochem. Photobiol. 38: 281-291; 1983.
- 83SI01. Sinha B. K. Enzymatic activation of hydrazine derivatives. A spin-trapping study. J. Biol. Chem. 258: 796-801; 1983.
- 83S102. Sinha B., K., Patterson M. A. Free radical metabolism of hydralazine. Binding and degradation of nucleic acids. *Biochem. Pharmacol.* 32: 3279-3284; 1983.
- 83TH01. Thornalley P. J., Trotta R. J., Stern A. Free radical involvement in the oxidative phenomena induced by *tert*-butyl hydroperoxide in erthyrocytes. *Biochim. Biophys. Acta* 759: 16– 22; 1983.
- 83TH02. Thornalley P. J., Stern A., Bannister J. V. A Mechanism for primaquine mediated oxidation of NADPH in red blood cells. *Biochem. Pharmacol.* 32: 3571-3575; 1983.
- 83TO01. Tomasi A., Billing S., Garner A., Slater T. F., Albano E. The metabolism of halothane by hepatocytes: A comparison between free radical spin trapping and lipid peroxidation in relation to cell damage. *Chem.-Biol. Interactions* 46: 353-368; 1983.
- 83TO02. Tomasi A., Albano E., Vannini V., Dianzani M. U. Spin trapping of a free radical reactive intermediate during isoniazid metabolism in isolated hepatocytes. *IRCS Med. Sci.* 11: 851-852; 1983.
- 83TO03. Tomasi A., Albano E., Dianzani M. U., Slater T. F., Vannini V. Metabolic activation of 1,2-dibromoethane to a free radical intermediate by rat liver microsomes and isolated hepatocytes. FEBS Lett. 160: 191-194; 1983.
- *84AB01. Abe K., Suezawa H., Hirota M., Ishii T. Mass spectrometic determination of spin adducts of hydroxyl and aryl free radicals. J. Chem. Soc. Perkin Trans. II 29-34; 1984.
- 84AU01. Augusto O., Faljoni-Alario A., Leite L. C. C., Nobrega F. G. DNA stand scission by the carbon radical derived from 2phenylethylhydrazine metabolism. *Carcinogenisis* 5: 781-784; 1984.
- 84BA01. Baldwin D. A., Jenny E. R., Aisen P. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide. J. Biol. Chem. 259: 13391-13394; 1984.
- 84BO01. Borg D. C., Schaich K. M., Forman A. Autoxidative cytotoxicity: Is there metal independent formation of hydroxyl radicals? Are there "crypto-hydroxyl" radicals? In: Oxygen Radicals in Chemistry and Biology (W. Bors, M. Saran, and D. Tait, eds.), pp. 123-129, Walter de Gruyter and Company, Berlin (1984).
- 84B002. Borg D. C., Schaich K. M. Cytotoxicity from coupled redox cycling of autoxidizing xenobiotics and metals. Israel J. Chem. 24: 38-53; 1984.
- 84BO03. Bowyer J. R., Camilleri P., Stapleton A. Superoxide formation in pea chloroplasts by a dioxathiadiaza-2,5-pentalene derivative, a new lipophilic Photosystem 1 acceptor. FEBS Lett. 172: 239-244; 1984.
- 84BU01. Buettner G. R., Doherty T. P., Bannister T. D. Hydrogen peroxide and hydroxyl radical formation by methylene blue in the presence of ascorbic acid. *Radiat. Environ. Biophys.* 23: 235-243; 1984.
- 84BU02. Buettner G. R. Thiyl free radical production with hema-

toporphyrin derivative, cysteine and light: A spin-trapping study. FEBS Lett. 177: 295-299; 1984.

- 84CA01. Carmichael A. J., Makino K., Riesz P. Quantitative aspects of ESR and spin trapping of hydroxyl radicals and hydrogen atoms in gamma-irradiated aqueous solutions. *Radiat. Res.* 100: 222-234; 1984.
- 84DE01. Decuyper J., Piette J., Lopez M., Merville M.-P., Van de Vorst, A. Induction of breaks in deoxyribonucleic acid by photoexcited promazine derivatives. *Biochem. Pharmacol.* 33: 4025– 4031; 1984.
- 84EV01. Evans J. C., Jackson S. K., Rowlands C. C., Barratt M. D. ENDOR and ESR studies of spin-trapped radicals in autoxidized unsaturated fatty acid methyl esters. *Biochim. Biophys. Acta* 792: 239-242; 1984.
- 84FA01. Faraggi M., Carmichael A., Riesz P. OH radical formation by photolysis of aqueous porphyrin solutions. A spin trapping and e.s.r. study. Int. J. Radiat. Biol. 46: 703-713; 1984.
- 84F101. Fischer V., Harrelson Jr. W. G., Chignell C. F., Mason R. P. Spectroscopic studies of cutaneous photosensitizing agents. V. Spin trapping and direct electron spin resonance investigations of the photoreduction of gentian(crystal) violet. *Photobiochem. Photobiophys.* 7: 111-119; 1984.
- 84FL01. Floyd R. A., Lewis C. A., Wong P. K. High pressure liquid chromatography-electrochemical detection of oxygen free radicals. In: Methods of Enzymology: Oxygen Radicals in Biological Systems Vol. 105, (L. Packer, ed.), pp. 231-237, Academic Press, New York (1984).
- 84FL02. Floyd R. A., Zs.-Nagy I. Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton system. *Biochim. Biophys. Acta* 790: 94-97, 1984.
- 84FU01. Fujii K., Morio M., Kikuchi H., Ishihara S., Okida M., Ficor F. In vivo spin-trap study on anaerobic dehalogenation of halothane. Life Sci. 35: 463-468; 1984.
- 84G101. Girotti A. W., Thomas J. P. Superoxide and hydrogen peroxide-dependent lipid peroxidation in intact and Triton-dispersed erythrocyte membranes. *Biochem. Biophys. Res. Commun.* 118: 474-480; 1984.
- *84GR01. Green M. J., Hill H. A. O. Chemistry of dioxygen. In: Methods of Enzymology: Oxygen Radicals in Biological Systems Vol. 105, (L. Packer, ed.), pp. 3-22, Academic Press, New York (1984).
- 84HA01. Halpern A. Spin trapping of radicals in triggeted methanol. Chem. Phys. Letters 103: 523-526; 1984.
- 84HA02. Harman L. S., Mottley C., Mason R. P. Free radical metabolites of L-cysteine oxidation. J. Biol. Chem. 259: 5606-5611; 1984.
- 84IG01. Iguchi N., Moriya F., Makino K., Rokushika S., Hatano H. Studies on gamma-irradiated aqueous solutions of amino acids with functional groups by the spin-trap high performance liquid chromatography-electron spin resonance method. Can. J. Chem. 62: 1722-1730; 1984.
- 841T01. Ito O., Matsuda M. Flash photolysis study for substituent and solvent effects on spin-trapping rates of phenylthiyl radicals with nitrones. Bull. Chem. Soc. Jpn. 57: 1745-1749: 1984.
- with nitrones, Bull, Chem. Soc. Jpn. 57: 1745-1749; 1984. *84JA01. Janzen E. G. Spin Trapping. In: Methods of Enzymology: Oxygen Radicals in Biological Systems Vol. 105, (L. Packer, ed.), pp. 188-198, Academic Press, New York (1984).
- 84JA02. Janzen E. G., Coulter G. A. Spin trapping in SDS Micelles. J. Am. Chem. Soc. 106: 1962-1968; 1984.
- 84JA03. Janzen E. G. Electron spin resonance study of the hyperfine splitting constants of naturally abundant carbon-13 and nitrogen-15 in diphenylmethyl tert-butyl aminoxyl(nitroxide). Solvent and temperature effects. Can. J. Chem. 62: 1653-1657;
 1984.
- 84JA04. Janzen E. G., Oehler U. M. Proton and nitrogen-14 EN-DOR spectra of aminoxyl spin adducts from PBN. Chemistry Lett. 1233-1236; 1984.
- 84J001. Josephy P. D., Rehorek D., Janzen E. G. Electron spin resonance spin trapping of thiyl radicals from the decomposition of thionitrites. *Tetrahedron Lett.* 25: 1685-1688; 1984.
- 84KA01. Kalyanaraman B., Mottley C., Mason R. P. On the use of organic extraction in the spin-trapping technique as applied

to biological systems. J. Biochem. Biophys. Methods 9: 27-31; 1984.

- 84KA02. Kalyanaraman B., Scaly R. C., Sinha B. K. An electron spin resonance study of the reduction of peroxides by anthracycline semiquinones. *Biochim. Biophys. Acta* 799: 270-275; 1984.
- *84KA03. Kalyanaraman B., Sivarajah K. The electron spin resonance study of free radicals formed during the arachidonic acid cascade and cooxidation of xenobiotics by prostaglandin synthase. In: Free Radicals in Biology, Vol. VI, (W. A. Pryor, ed.) pp. 140-198, Academic Press, New York (1984).
- 84KU01. Kubow S., Janzen E. G., Bray T. M. Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole. J. Biol. Chem. 259: 4447-4451; 1984.
- 84LA01. Lambert R., Kroneck P. M. H., Boeger P. Radical formation and peroxidative activity of phototoxic diphenyl ethers. Z. Naturforsch. 39c: 486-491; 1984.
- *84MA01. Mason R. P. Spin trapping free radical metabolites of toxic chemicals. In: Spin Labeling in Pharmacology (J. L. Holtzman, ed.), pp. 87-129, Academic Press, New York (1984).
- *84MA02. Makino K., Moriya F., Hatano H. Application of the spin-trap HPLC-ESR method to radiation chemistry of amino acids in aqueous solutions. *Radiat. Phys. Chem.* 23: 217-228; 1984.
- 84MC01. McCay P. B., Lai E. K., Poyer J. L., DuBose C. M., Janzen E. G. Oxygen- and carbon-centered free radical formation during carbon tetrachloride metabolism. Observation of lipid radicals in vivo and in vitro. J. Biol. Chem. 259: 2135-2143; 1984.
- 84ME01. Merville M. P., Decuyper J., Lopez M., Piette J., Van de Vorst, A. Phototoxic potentialities of tartrazine: Screening tests. Photochem. Photobiol. 40: 221-226; 1984.
- 84MO01. Mossoba M. M., Rosenthal I., Carmichael A. J., Riesz P. Photochemistry of porphyrins as studied by spin trapping and electron spin resonance. *Photochem. Photobiol.* 39: 731-734; 1984.
- 84MO02. Moreno S. N. J., Mason R. P., Docampo R. Distinct reduction of nitrofurans and metronidazole to free radical metabolites by tritrichomonas foetus hydrogenosomal and cytosolic enzymes. J. Biol. Chem. 259: 8252-8259; 1984.
- 84MO03. Moreno S. N. J., Mason R. P., Docampo R. Reduction of nitrofurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. J. Biol. Chem. 259: 6298-6305; 1984.
- 84MO04. Mossoba M. M., Makino K., Riesz P., Perkins Jr. R. C. Long-range proton hyperfine coupling in alicyclic nitroxide radicals by resolution-enhanced electron paramagnetic resonance. J. Phys. Chem. 88: 4717-4723; 1984.
- 84MO05. Moriya F., Makino K., Iquchi N., Suzuki N., Rokushika S., Hatano H. Studies on spin-trapped radicals in gamma-irradiated aqueous solutions of cis-4-chloro-L-proline and cis-4-hydroxy-L-proline by high-performance liquid chromatography and ESR spectroscopy. J. Phys. Chem. 88: 2373-2377; 1984.
- 84MO06. Moriya F., Iguchi N., Makino K., Rokushika S., Hatano H. Studies on gamma-irradiated aqueous solutions of tripeptides composed of glycine and L-alanine by the spin-trap high-performance liquid chromatography-electron spin resonance method. Can. J. Chem. 62: 2206-2216; 1984.
- 84MO07. Moreno S. N. J., Mason R. P., Docampo R. Ca²⁺ and Mg²⁺-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase. J. Biol. Chem. 259: 14609-14616; 1984.
- 84MU01. Muindi J. R. F., Sinha B. K., Gianni L., Myers C. E. Hydroxyl radical production and DNA damage induced by anthrcycline-iron complex. FEBS Lett. 172: 226-230; 1984.
- 84NO01. Nohl H., Jordan W. The biochemical role of ubiquinone and ubiquinone-derivatives in the generation of hydroxyl-radicals from hydrogen-peroxide. In: Oxygen Radicals in Chemistry and Biology, (W. Bors, M. Saran, and D. Tait, eds.), pp. 155-163, Walter de Gruyter and Co., Berlin (1984).
- 84P101. Piette L. H., Baxley L. H., Grover T. A., Harwood P. J. A comparative kinetic study of the initiation of lipid peroxidation with OH radicals and ferrous iron. In: Oxygen Radicals in Chem-

istry and Biology, (W. Bors, M. Saran, and D. Tait, eds.), pp. 135-145, Walter de Gruyter and Company, Berlin (1984).

- 84PO01. Pollakis G., Goormaghtigh E., Delmelle M., Lion Y., Ruysschaert J.-M. Adriamycin and derivatives interaction with the mitochondrial membrane: O₂ consumption and free radicals formation. *Res. Commun. Chem. Path. Pharmacol.* 44: 445-459; 1984.
- 84PR01. Pryor W. A., Tamura M., Church D. F. ESR spin-trapping study of the radicals produced in NOx/olefin reactions: A mechanism for the production of the apparently long-lived radicals in gas phase cigarette smoke. J. Am. Chem. Soc. 106: 5073-5079; 1984.
- 84RE01. Rehorek D., Janzen E. G. On the formation of arseno aminoxyls (nitroxides) by spin trapping of arseno radicals. *Polyhedron* 3: 631-634; 1984.
- 84RE02. Rehorek D., DuBose C. M., Janzen E. G. Spin trapping of chlorine atoms produced by photolysis of hexachloroplatinate(IV) in solution. *Inorg. Chim. Acta* 83: L7-L8; 1984.
- 84RE03. Reszka K., Hall R. D., Chignell C. F. Quenching of the excited state of 2-phenylbenzoxazole by azide ion. Fluorescence and ESR study. *Photochem. Photobiol.* 40: 707-713; 1984.
- 84RE04. Rehorek D., Janzen E. G. Spin-trapping von Azidradikalen mittels Nitrosoverbindungen. Z. Chem. 24: 68; 1984.
- 84RE05. Rehorek D., Janzen E. G. Spin trapping of radicals generated by ultrasonic decomposition of organotin compounds. J. Organometal. Chem. 268: 135-139; 1984.
- 84RE06. Rehorek D, Janzen E. G. On the spin trapping of cyanatyl ('NCO) radicals by nitrosodurene. Can. J. Chem. 62: 1598-1599, 1984.
- 84RE07. Rehorek D., Janzen E. G. Spin-trapping von radikalen bei der Zersetzung aromatischer Diazoniumsalze mittels Ultraschall. J. Prakt. Chem. 326: 935-940; 1984.
- 84RE08. Rehorek D., DuBose C. M., Janzen E. G. Spin-trapping von Radikalen bei der Photolyse von *trans*-[Co(1,2-diaminoethan)₂Cl₂]Cl in waessriger Loesung. Z. Chem. 24: 188; 1984.
- 84RE09. Rehorek D., Janzen E. G. Ucber den Nachweis von Radikalen bei der Sonolyse von [Co(NH₃)₃N₃]Cl₂. Z. Chem. 24: 228-229; 1984.
- 84RE10. Rehorek D, Janzen E. G. Spin-Trapping von Bromatomen mittels Phenyl-N-tert-butyl nitron. Z. Chem. 24: 441-442; 1984.
- .84RO01. Rosen G. M., Freeman B. A. Detection of superoxide generated by endothelial cells. Proc. Natl. Acad. Sci. USA 81: 7269-7273; 1984.
- 84RO02. Ross D., Albano E., Nilsson U., Moldeus P. Thiyl radicals—formation during peroxidase-catalyzed metabolism of acetaminophen in the presense of thiols. Biochem. Biophys. Res. Commun. 125: 109-115; 1984.
- *84RO03. Rosen G. M., Rauckman E. J. Spin trapping superoxide and hydroxyl radicals. In: *Methods in Enzymology: Oxygen Radicals in Biological Systems*, Vol. 105 (L. Packer, ed.), pp. 198-209, Academic Press, (1984).
- 84RO04. Rosen G. M., Rauckman E. J., Wilson R. L., Jr., Tschanz C. Production of superoxide during the metabolism of nitrazepam. Xenobiotica 14: 785-794; 1984.
- 84SI01. Sinha B. K., Trush M. A., Kennedy K. A., Mimnaugh E. G. Enzymatic activation and binding of adriamycin to nuclear DNA. Cancer Res. 44: 2892-2896; 1984.
- 84S102. Sinha B. K. Metabolic activation of procarbazine. Evidence for carbon-centered free-radical intermediates. *Biochem. Pharmacol.* 33: 2777-2781; 1984.
- 84SU01. Sugioka K., Nakano Ji., Tsuchiya J., Nakano M., Sugioka Y., Tero-Kubota S., Ikegami Y. Clear evidence for the participation of 'OH in Ismbda DNA breakage induced by the enzymatic reduction of adriamycin in the presence of iron-ADP. Importance of local 'OH concentration for DNA stand cleavage. Biochemistry Int. 9: 237-242; 1984.
- 84TE01. Tero-Kubota S., Ikegami Y., Sufjoka K., Nakano M. Spin trapping on the generation mechanism of active oxygen radicals in the enzymatic reduction of quinoid antitumor agents. Chemistry Lett. 1583-1586; 1984.

84TH01. Thornalley P. J., Trotta R. J., Stern A. Free radical pro-

duction from the reaction of *t*-butyl hydroperoxide with iron complexes. In: Oxygen Radicals in Chemistry and Biology, (W. Bors, M. Saran, and D. Tait, eds.), pp. 215-218, Walter de Gruyter and Company, Berlin (1984).

- 84TH02. Thornalley P. J., Stern A. The production of free radicals during the autoxidation of monosaccharides by buffer lons. Carbohydr. Res. 134: 191-204; 1984.
- 84TH03. Thornalley P. J. The haemolytic reactions of 1-acetyl-2phenylhydrazine and hydrazine: A spin trapping study. Chem.-Biol. Interactions 50: 339-349; 1984.
- 84TH04. Thornalley P., Wolff S., Crabbe J., Stern A. The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalyzed by buffer ions. *Biochim. Biophys. Acta* 797: 276-287; 1984.
- 84TH05. Thornally P. J., d'Arcy Doherty M., Smith M. T., Bannister J. V., Cohen G. M. The formation of active oxygen species following activation of 1-naphthol, 1,2 and 1,4-naphthoquinone by rat liver microsomes. *Chem.-Biol. Interactions* 48: 195-206; 1984.
- 84TH06. Thornalley P. J., Wolff S. F., Crabbe M. J. C., Stern A. The oxidation of oxyhaemoglobin by glyceraldehyde and other simple monosaccharides. *Biochem. J.* 217: 615-622; 1984.
- *84TO01. Tomasi A., Albano E., Bini A., Botti B., Slater T. F., Vannini V. Free radical intermediates under hypoxic conditions in the metabolism of halogenated carcinogens. *Toxicol. Pathol*ogy 12: 240-246; 1984.
- 84UE01. Ueno I., Kohno M., Haraikawa K., Hirono I. Interaction between quercetin and superoxide radicals. Reduction of the quercetin mutagenicity. J. Pharm. Dyn. 7: 798-803; 1984.
- 84UE02. Ueno I., Kohno M., Yoshihira K., Hirono I. Quantitative determination of the superoxide radicals in the xanthine oxidase reaction by measurement of the electron spin resonance signal of the superoxide radical spin adduct of 5,5-dimethyl-1-pyrroline-1-oxide. J. Pharm. Dyn. 7: 563-569; 1984.
- 84WE01. Weitzman S. A., Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch. Biochem. Biophys. 228: 373-376; 1984.
- 84WO01. Wolff S. P., Crabbe M. J. C., Thronalley P. J. The autoxidation of glyceraldehyde and other simple monosaccharides. *Experientia* 40: 244-246; 1984.
- 84YA01. Yamada T., Niki E., Yokoi S., Tsuchiya J., Yamamoto Y., Kamiya Y. Oxidation of lipids. XI. Spin trapping and identification of peroxy and alkoxy radicals of methyl linoleate. *Chem. Phys. Lipids* 36: 189-196; 1984.
- 84ZS01. Zs.-Nagy I., Floyd R. A. Hydroxyl free radical reactions with amino acids and proteins studied by electron spin resonance spectroscopy and spin-trapping. *Biochim. Biophys. Acta* 790: 238-250; 1984.
- 85AL01. Albano E., Tomasi A., Vannini V., Diazani M. U. Detection of free radical intermediates during isoniazid and iproniazid metabolism by isolated rat hepatocytes. *Biochem. Pharmacol.* 34: 381-382; 1985.
- *85AL02. Albano E., Tomasi A., Cheeseman K. H., Vannini V., Dianzani M. U. Use of isolated hepatocytes for the detection of free radical intermediates of halogenated hydrocarbons. In: Free Radicals in Liver Injury, (G. Poli, K. H. Cheeseman, M. U. Dianzani, and T. F. Slater, eds.), pp. 7-16, IRL Press Limited, Oxford (1985).
- 85AN01. Antholine W. E., Sarna T., Sealy R. C., Kalyanaraman B., Shields G. D., Petering D. H. Free radicals from the photodecomposition of bleomycin. *Photochem. Photobiol.* 41: 393-399; 1985.
- 85AU01. Augusto O., DuPlessis L. R., Weingrill C. L. V. Spin trapping of methyl radical in the oxidative metabolism of 1,2dimethylhydr ine. Biochem. Biophys. Res. Commun. 126: 853-858; 1985.
- 85BA01. Baumann H., Timpe H.-J., Zubarev V. E., Fok N. V., Mel'nikow M. J. ESR-spin-trapping bei bivalenten Photoinitiatorsystemen, bestehend aus alpha-Phenyl-benzoin und Aryloniumverbindungen. Z. Chem. 25: 181; 1985.
- 85BA02. Baumann H., Oertel U., Timpe H.-J., Zubarev V. E., Fok N.V., Mel'nikow M. J. Ist der Spin-Trap bei photoinduzierten

Elektronentrunsferreaktionen eine "inerte" Sonde? Z. Chem. 25: 182-183; 1985.

- 85BA03. Baumann H., Timpe H.-J., Zubarev V. E., Fok N. V., Mel'nikov M. Y., Raskasovskij Y. W. Untersuchungen zur Spin-Trapping-Kinetik in System von Radikalen unterschiedlicher Reaktivitaet. Die Photolyse von alpha-Phenylbenzoin in Gegenwart von Benzyliden-tert-butylamin-N-oxid. J. Prakt. Chemie. 327: 749-758; 1985.
- *85BA04. Bannister J. V., Bannister W. H. Production of oxygencentered radicals by neutrophils and macrophages as studied by electron spin resonance (ESR). Environ. Health Perspect. 64: 37-43; 1985.
- 85BE01. Ben-Hur E., Carmichael A., Riesz P., Rosenthal I. Photochemical generation of superoxide radical and the cytotoxicity of phthalocyanines. Int. J. Radiat. Biol. 48: 837-846; 1985.
- 85BO01. Bowyer J. R., Camilleri P. Spin-trap study of the reactions of ferredoxin with reduced oxygen species in pea chloroplasts. *Biochim. Biophys. Acta* 808: 235-242; 1985.
- 85BO02. Boyd J. A., Eling T. E. Metabolism of aromatic amines by prostaglandin H synthase. *Environ. Health Perspective* 64: 45-51; 1985.
- 85BR01. Bray T. M., Kubow S. Involvement of free radicals in the mechanism of 3-methylindole-induced metabolic activation in chemically induced lung disease. *Environ. Health Perspective* 64: 61-67; 1985.
- 85BU01. Buettner G. R. Spin trapping of hydroxyl radical. In: CRC Handbook of Methods for Oxygen Radical Research, (R.A. Greenwald, ed.), pp. 151-155, CRC Press, Boca Raton (1985).
- 85BU02. Buettner G. R., Need M. J. Hydrogen peroxide and hydroxyl free radical production by hematoporphyrin derivative, ascorbate and light. *Cancer Lett.* 25: 297-304; 1985.
- 85CA01. Carmichael A. J., Mossoba M. M., Riesz P., Rosenthal 1. Food dye-sensitized photoreactions in aqueous media. *Pho*tobióchem. Photobiophys. 10: 13-21; 1985.
- 85CA02. Carmichael A., Riesz P. Photoinduced reactions of anthraquinone antitumor agents with peptides and nucleic acid bases: An electron spin resonance and spin trapping study. Arch. Biochem. Biophys. 237: 433-444; 1985.
- 85CA03. Carmichael A. J., Samuni A., Riesz P. Photogeneration of superoxide and decarboxylated peptide radicals by carboquone, mitomycin C and streptonigrin. An electron spin resonance and spin trapping study. *Photochem. Photobiol.* 41: 635-642; 1985.
- *85CH01. Cheeseman K. H., Albano E. F., Tomasi A., Slater T. F. Biochemical studies on the metabolic activation of halogenated alkanes. *Environ. Health Perspective* 64: 85-101; 1985.
- *85CH02. Chignell C. F., Motten A. G., Buettner G. R. Photoinduced free radicals from chlorpromazine and related phenothiazines: Relationship to phenothiazine-induced photosensitization. *Environ. Health Perspective* 64: 103-110; 1985.
- *85CH03. Church D. F., Pryor W. A. Free-radical chemistry of cigarette smoke and its toxicological implications. *Environ. Health Perspective* 64: 111-126; 1985.
- 85CO01. Covello P. S., Thompson J. E. Spin trapping evidence for formation of the sulfite radical anion during chloroplast-mediated oxidation of bisulfite ion. *Biochim. Biophys. Acta* 843: 150-154; 1985.
- 85DU01. Dugue B., Meunier B. How can iron salts mediate the degradation of nucleos(t)ides by elliptinium acetate via free radicals? Biochem. Biophys. Res. Commun. 133: 15-22; 1985.
- 85EL01. Eling T. E., Mason R. P., Sivarajah K. The formation of aminopyrene cation radical by the peroxidase activity of prostaglandin H synthase and subsequent reactions of the radical. J. Biol. Chem. 260: 1601-1607; 1985.
- 85EV01. Evans J. C., Jackson S. K., Rowlands C. C., Barratt M. D. ENDOR, triple resonance and ESR studies of spin-trapped radicals in autoxidized linoleic acid and its deuterated derivatives. Biochim. Biophys. Acta 835: 421-425; 1985.
- 85EV02. Evans J. C., Jackson S. K., Rowlands C. C., Barrett M. D. An electron spin resonance study of radicals from chloramine-T-1. Spin trapping of radicals produced in acid media. *Tetra*hedron 41: 5191-5194; 1985.

- 85EV03. Evans J. C., Jackson S. K., Rowlands C. C., Barratt M. D. An electron spin resonance study of radicals from chloramine-T-2. Spin trapping of photolysis products of chloramine-T at alkaline pH. Tetrahedron 41: 5195-5200; 1985. See also erratum in: Tetrahedron 42: 2387; 1986.
- 85F101. Fischer V., West P. R., Nelson S. D., Harvison P. J., Mason R.P. Formation of 4-aminophenoxyl free radical from the acetaninophen metabolite N-acetyl-p-benzoquinone imine. J. Blol. Chem. 260: 11446-11450; 1985.
- *85GR01. Green M. J., Hill H. A. O., Tew D. G. Applications of spin-trapping to biological systems. Biochem. Soc. Trans. 13: 600-603; 1985.
- 85HA01. Halpern A. Spin trapping of radicals in tritiated benzene. Chem. Phys. Lett. 119: 331-334; 1985.
- 85HA02. Halpern A., Knieper J. Spin trapping of radicals in gasphase cigarette smoke. Z. Naturforsch. 40b: 850-852; 1985.
- 85HA03. Hammel K. E., Tien M., Kalyanaraman B., Kirk T. K. Mechanism of oxidative C_a-C_p cleavage of a lignin model dimer by *Phanerochaete chrysosporium* ligninase. J. Riol. Chem. 260: 8348-8353; 1985.
- *85JA01. Janzen E. G., Stronks H. J., DuBose C. M., Poyer J. L., McCay P. B. Chemistry and biology of spin-trapping radicals associated with halocarbon metabolism in vitro and in vivo. *Environ. Health Perspective* 64: 151-170; 1985.
- 85KA01. Kalyanaraman B., Janzen E. G., Mason R. P. Spin trapping of the azidyl radical in azide/catalase/H₂O₂ and various azide/peroxidase/H₂O₂ peroxidizing systems. J. Biol. Chem. 260: 4003-4006; 1985.
- 85KA02. Kalyanaraman B., Sinha B. K. Free radical-mediated activation of hydrazine derivatives. *Environ. Health Perspective* 64: 179-184; 1985.
- 85K101. Kirk T. K., Mozuch M. D., Tien M. Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysoporium burds. *Biochem. J.* 226: 455-460; 1985.
- 85KU01. Kubow S., Bray T. M., Janzen E. G. Spin trapping studies on the effects of vitamin E and glutathione on free radical production induced by 3-methylindole. *Biochem. Pharmacol.* 34: 1117-1119; 1985.
- *85MA01. Mason R. P., Josephy P. D. Free radical mechanism of nitroreductase. In: Toxicity of Nitroaromatic Compounds, (D.E. Rickert, ed.), pp. 121–140, Hemisphere Publishing Corp., Washington (1985).
- *85MA02. Makino K., Moriya F., Hatano H. Separation of free radicals by high-performance liquid chromatography with electron spin resonance detection. J. Chromatography 332: 71-106; 1985.
- 85MA03. Matsugo S., Kayamori N., Hatano Y., Ohta T., Konishi T. Degradation mediated OH radical generation from synthetic cyclic peroxides: ESR studies. FEBS Lett. 184: 25-29; 1985.
- 85ME01. de Mello Filho A. C., Meneghini R. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species. *Biochim. Biophys.* Acta 847: 82-89; 1985.
- 85MI01. Miyazawa T., Chiba T., Kaneda T. Oxygen-centered radical formation in liver homogenates and microsomes upon the addition of lipid hydroperoxides. Agric. Biol. Chem. 49: 2491-2492; 1985.
- 85M102. Miyazawa T., Chiba T., Kaneda T. Spin trapping of oxygen-centered lipid radicals in liver of oxidized oil-dosed rats. Agric. Biol. Chem. 49: 3081-3083; 1985.
- 85MI03. Mikuni T., Tatsuta M., Kamachi M. Production of hydroxyl-free radical by reaction of hydrogen peroxide with Nmethyl-N'-nitrosoquanidine. Cancer Res. 45: 6442-6445; 1985.
- 85M104. Mikani N., Takahashi N., Yamada H., Miyamoto J. Separation and identification of short-lived free radicals formed by photolysis of the pyrethroid insecticide fenvalerate. *Pestic. Sci.* 16: 101-112; 1985.
- 85MO01. Motten A. G., Buettner G. R., Chignell C. F. Spectroscopic studies of cutaneous photosensitizing agents-VIII. A spin trapping study of light induced free radicals from chlorpromazine and promazine. *Photochem. Photobiol* 42: 9-15; 1985.

- 85MO02. Mossoba M. M., Gutierrez P. L. Diaziquone as a potential agent for photoirradiation therapy: Formation of the semiquinone and hydroxyl radicals by visible light. *Biochem. Biophys. Res. Commun.* 132: 445-452; 1985.
 85MO03. Morgan D. D., Mendenhall C. L., Bobst A. M., Rouster
- 85MO03. Morgan D. D., Mendenhall C. L., Bobst A. M., Rouster S.D. Incorporation of the spin trap DMPO into cultured fetal mouse liver cells. *Photochem. Photobiol.* 42: 93-94; 1985.
- 85NO01. Noda A., Noda H., Ohno K., Sendo T., Misaka A., Kanazawa Y., Isobe R., Hirata M. Spin trapping of a free radical intermediate formed during microsomal metabolism of hydrazine. Biophys. Res. Commun. 133: 1086-1091; 1985.
- 850K01. Okazuki M., Sakata S., Konaka R., Shiga T. Application of spin trapping to probe the radical pair model of magneticfield-dependent photoreduction of naphthoquinone in SDS micellur solution. J. Am. Chem. Soc. 107: 7214-7216; 1985.
- 85PR01. Pritsos C. A., Constantinides P. P., Tritton T. R., Heimbrook D. C., Sartorelli A. C. Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C. Anal. Biochem. 150: 294-299; 1985.
- 85RE01. Rehorek D., Janzen E. G. Ueber die Photolyse von Quecksilber(II)-cyanid in wacssriger Locsung, Z. Chem. 25: 69-70; 1985.
- 85RE02. Rehorek D., Janzen E. G. Ueber die Reaktion von Chloranil mit Cyanidionen—eine ESR-Studie. J. Prakt. Chem. 327: 705-717; 1985.
- 85RE03. Rehorek D., Janzen E. G. Ueber die Reaktion von Cyunid-
- Ionen mit O-zentrierten Radikalen. Z. Chem. 25: 451-452; 1985.
 85RE04. Rehorek D., Janzen E. G. Ueber die Reaktion von Peroxodisulfat mit Azidionen. Z. Chem. 25: 100-101; 1985.
- *85RE05. Rehorek D. Spin trapping of radicals in reactions of inorganic and coordination compounds. Proceedings of the 10th Conference on Coordination Chemistry, pp. 329-332; 1985.
- *85RI01. Riesz P., Berdahl D., Christman C. L. Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ. Health Perspective 64: 233-252; 1985.
- *85RO01. Rosen G. M., Finkelstein E. Use of spin traps in biological systems. Adv. Free Rad. Biol. Med. 1: 345-375; 1985.
- *85RO02. Ross D., Moldéus P. Generation of reactive species and fate of thiols during peroxidase-catalyzed metabolic activation of aromatic amines and phenols. *Environ. Health Perspective* 64: 253-257; 1985.
- 85RO03. Ross D., Cotgreave I., Moldéus P. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine. *Biochim. Biophys. Acta* 841: 278-282; 1985.
- 85RO04. Ross D., Norbeck K., Moldéus P. The generation and subsequent fate of glutathionyl radicals in biological systems. J. Biol. Chem. 260: 15028-15032; 1985.
- 85TA01. Takahashi N., Mikami N., Yamada H., Miyamoto J. Photodegradation of the herbicide bromobutide in water. J. Pesticide. Sci. 10: 247-256; 1985.
- 85TH01. Thornalley P. J., Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta 827: 36-44; 1985.
- *85TH02. Thornalley P. J., Bannister J. V. The spin trapping of superoxide radicals. In: CRC Handbook of Methods for Oxygen Radical Research, (R. A. Greenwald, ed.), pp. 133-136. CRC Press, Boca Raton (1985).
- 85TH03. Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide-dependent lipid peroxidation. J. Biol. Chem. 260: 3275-3280; 1985.
- *85TH04. Thornalley P. J. Monosaccharide autoxidation in health and disease. Environ. Health Perspective 64: 297-307; 1985.

÷

- 85TH05. Thornalley P. J., Stern A. The hydrolytic autoxidation of 1,4-naphthoquinone-2-potassium sulphonate: Implications for 1,4naphthoquinone-2-potassium sulphonate-induced oxidative stress in the red blood cell. Chem.-Biol. Interactions 56: 55-71; 1985.
- 85TH06. Thornalley P. J., Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. *Biochim. Biophys. Acta* 827: 36-44; 1985.

- 85TH07. Thornalley P. J., Stern A. Red blood cell oxidative metubolism induced by hydroxypyruvaldehyde. Biochem. Pharmacol. 34: 1157-1164; 1985.
- 85TH08. Thornalley P. J., Dodd N. J. F. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes. *Biochem. Pharmacol.* 34: 669-674; 1985.
- 85TO01. Tomasi A., Albano E., Biasi F., Slater T., Vannini V., Dianzani M. U. Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by ESR-spin trapping technique. *Chem.-Biol. Interactions* 55: 303-316; 1985.
- 86AL01. Albano E., Tomasi A., Goria-Gatti L., Carini R., Vannini V., Dianzani M. U. Free radical metabolism of ethanol. In: Free Radicals. Cell Damage and Disease, (C. Rice-Evans, ed.), pp. 117-126, Richelieu Press, London (1986).
- 86AL02. Albano E., Tomasi A., Goria-Gatti L., Poli G., Vannini V., Dianzani M. U. Free radical metabolism of alcohols by rat liver microsomes. *Free Rad. Res. Comms.* (1986).
- 86AU01. Augusto O., Weingrill C. L. V., Schreier S., Amemiya H. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Arch. Biochem. Biophys. 244: 147-155; 1986.
- 86AU02. Augusto O., Alves M. J. M., Colli W., Filardi L. S., Brener Z. Primaquine can mediate hydroxyl radical generation by Trypanosoma cruzi extracts. Biochem. Biophys. Res. Commun. 135: 1029-1034; 1986.
- 86B001. Borg D. C., Schaich K. M. Pro-oxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine. J. Free Rad. Biol. Med. 2: 232-243; 1986.
- 86BR01. Britigan B. E., Rosen G. M., Chai Y., Cohen M. S. Do human neutrophils make hydroxyl radical? J. Biol. Chem. 261: 4426-4431; 1986.
- 86BR02. Britigan B. E., Rosen G. M., Thompson B. Y., Chai Y., Cohen M. S. Stimulated human neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping techniques. J. Biol. Chem. 261: 17026-17032; 1986.
- 86BU01. Bucttner G. R., Motten A. G., Hall R. D., Chignell C. F. Free radical production by chlorpromazine sulfoxide, and ESR spin-trapping and flash photolysis study. *Photochem. Photobiol.* 44: 5-10; 1986.
- 86CA01. Canada A. T., Werkman R. F., Mansbach II C. M., Rosen G.M. Biochemical changes in the intestine associated with anoxia and reoxygenation: *In vivo* and *in vitro* studies. J. Free Rad. Biol. Med. 2: 327-334; 1986.
- 86CO01. Connor H. D., Thurman R. G., Galizi M. D., Mason R. P. The formation of a novel free radical metabolite from CCl, in the perfused rat liver and in vivo. J. Biol. Chem. 261: 4542-4548; 1986.
- 86CO02. Connor H. D., Fischer V., Mason R. P. A search for oxygen-centered free radicals in the lipoxygenase/linoleic acid system. Biochem. Biophys. Res. Commun. 141: 614-621; 1986.
- 86DA01. Davies M. J., Slater T. F. Electron spin resonance spin trapping studies on the photolytic generation of halocarbon sadicals. Chem.-Biol. Interactions 58: 137-147; 1986.
- 86DA02. Davies M. J., Slater T. F. Studies on the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicals in organic solvents. *Biochem. J.* 240: 789– 795; 1986.
- 86D001. Doroshow J. H., Davies K. J. A. Redox cycling of anthracyclines by cardiac mitochondria. J. Biol. Chem. 261: 3068-3074; 1986.
- 86EL01. Eling T. E., Curtis J. F., Harman L. S., Mason R. P. Oxidation of glutathione to its thiyl free radical metabolite by prostiglandin H synthase. J. Biol. Chem. 261: 5023-5028; 1986.
- 86EL.02. Elliott B. M., Dodd N. J. F., Elcombe C. R. Increased hydroxyl radical production in liver peroxisomal fractions from rats treated with peroxisome proliferators. *Carcinogenesis* 7: 795-799; 1986.
- 86HA01. Hammel K. E., Kalyanaraman B., Kirk T. K. Substrate free radicals are intermediates in ligninase catalysis. Proc. Natl. Acad. Sci. USA 83: 3708-3712; 1986.

- 86HA02. Harman L. S., Carver D. K., Schreiber J., Mason R. P. One- and two-electron oxidation of reduced glutathione by peroxidases. J. Biol. Chem. 261: 1642-1648; 1986.
- 86HI01. Hintz P., Kalyanaraman B. Metal ion-induced activation A of molecular oxygen in pigmented polymers. *Biochim. Biophys.* Acta 883: 41-45; 1986.
- 86HO01. Hoebeke M., Gandin E., Lion Y. Photoionization of tryptophan: An electron spin resonance investigation. *Photochem. Photobiol.* 44: 543-546; 1986.
- 861W01. Iwahashi H., Ikeda A., Negoro Y., Kido R. Detection of radical species in haematin-catalyzed retinoic acid 5,6-epoxidation by using h.p.1.c.-e.p.r. spectrometry. *Biochem. J.* 236: 509-514; 1986.
- *86JA01. Janzen E. G., Oehler U. M., Haire D. L., Kotake Y. ENDOR spectra of aminoxyls. Conformational study of alkyl and aryl spin adducts of deuterated α -phenyl-*N-tert*-butylnitrone (PBN) based on proton and β -¹³C hyperfine splittings. J. Am. Chem. Soc. 108: 6858-6863; 1986.
- 86KE01. Kennedy C. H., Pryor W. A., Winston G. W., Church D. F. Hydroperoxide-induced radical production in liver mitochondria. Biochem. Biophys. Res. Commun. 141: 1123-1129; 1986.
- 86KO01. Korytowski W., Kalyanaraman B., Menon I. A., Sarna T., Scaly R. C. Reaction of superoxide anions with melanins: Electron spin resonance and spin trapping studies. *Biochim. Bio*phys. Acta 882: 145-153; 1986.
- 86KU01. Kuwabara M., Inanami O., Sato F. OH-induced free radicals in purine nucleosides and their homopolymers: c.s.r. and spin-trapping with 2-methyl-2-nitrosopropane. Int. J. Radiat. Biol. 49: 829-844; 1986.
- 86LA01. Lai E. K., Crossley C., Sridhar R., Misra H. P., Janzen E.G., McCay P. B. In vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice. Arch. Biochem. Biophys. 244: 156-160; 1986.
- 86MA01. Makino K., Imaishi H., Morinishi S., Takeuchi T., Fujita Y. An ESR study on lipid peroxidation process. Formation of hydrogen atoms and hydroxyl radicals. *Biochem. Biophys. Res. Commun.* 141: 381-386; 1986.
- 86MA02. Mansbach II C. M., Rosen G. M., Rahn C. A., Strauss K.E. Detection of free radicals as a consequence of rat intestinal cellular drug metabolism. *Biochim. Biophys. Acta* 888: 1-9; 1986.
- *86MA03. Mason R. P., Fischer V. Free radicals of acetaminophen: Their subsequent reactions and toxicological significance. Federation Proc. 45: 2493-2499; 1986.
- 86MO01. Motohashi N., Mori I. Thiol-induced hydroxyl radical formation and scavenger effect of thiocarbamides on hydroxyl radicals. J. Inorg. Biochem. 26: 205-212; 1986.
- 86MO02. Moreno S. N. J., Schreiber J., Mason R. P. Nitrobenzyl radical metabolites from microsomal reduction of nitrobenzyl chlorides, J. Biol. Chem. 261: 7811-7815; 1986.
- 86M003. Mottley C., Connor H. D., Mason R. P. [170]Oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps DMPO, PBN and 4-POBN. Biochem. Biophys. Res. Commun. 141: 622-628; 1986.
- 86MO04. Mottley C., Mason R. P. An electron spin resonance study of free radical intermediates in the oxidation of indole acetic acid by horseradish peroxidase. J. Biol. Chem. 261: 16860-16864; 1986.
- 86N001. Nohl H., Jordan W. The mitochondrial site of superoxide formation. Biochem. Biophys. Res. Commun. 138: 533-539; 1986.
- 86OZ01. Ozawa T., Hanaki A. Spin-trapping of superoxide ion by a water-soluble, nitroso-aromatic spin-trap. Biochem. Biophys.
 Res. Commun. 136: 657-664; 1986.
- 86P101. Piette J., Decuyper J., Van de Vorst A. DNA alterations photosensitized by tetracycline and some of its derivatives. J. Invest, Dermatol. 85: 653-658; 1986.
- 86P102. Pilas B., Felix C. C., Sarna T., Kalyanaraman B. Photolysis of pheomelanin precursors: An ESR-spin trapping study. *Photochem. Photobiol.* 44: 689-696; 1986.
- 86P001. Poli G., Chiarpotto E., Albano E., Biasi F., Cecchini G., Dianzani M. U. Iron overload: Experimental approach using rat hepatocytes in single cell suspension. In: Frontiers of Gas-

trointestial Research, Vol. 9, (P. Rosen, ed.), pp. 38-49, Karger, Basel (1986).

- 86RE01. Reszka K., Kolodziejczyk P., Lown J. W. Photosensitization by antitumor agents—3. Spectroscopic evidence for superoxide and hydroxyl radical production by anthrapyrotole-sensitized oxidation of NADH. J. Free Rad. Biol. Med. 2: 267-274; 1986.
- 86RE02. Reszka K., Kolodziejczyk P., Lown J. W. Photosensitization by antitumor agents—2. Anthrapyrazole-photosensitized oxidation of ascorbic acid and 3,4-dihydroxyphenylalanine. J. Free Rad. Biol. Med. 2: 203-211; 1986.
- 86RE03. Reed G. A., Curtis J. F., Mottley C., Eling T. E., Mason R. P. Epoxidation of (±)-7,8-dihydroxy-7,8-dihydroben-zo[a]pyrene during (bi)sulfite autoxidation: Activation of a procarcinogen by a cocarcinogen. *Proc. Natl. Acad. Sci. USA* 83: 7499-7502; 1986.
- 86SA01. Samuni A., Carmichael A. J., Russo A., Mitchell J. B., Riesz P. On the spin trapping and ESR detection of oxygenderived radicals generated inside cells. Proc. Natl. Acad. Sci. -USA 83: 7593-7597; 1986.
- 86SC01. Schreiber J., Mason R. P., Eling T. E. Carbon-centered free radical intermediates in the hematin- and ram seminal vesicle-catalyzed decomposition of fatty acid hydroperoxides. Arch. Biochem. Biophys. 251: 17-24; 1986.
- 86SC02. Schreiber J., Eling T. E., Mason R. P. The oxidation of arachidonic acid by the cyclooxygenase activity of purified prostaglandin H synthase: Spin trapping of a carbon-centered free
- radical intermediate. Arch. Biochem. Biophys. 249: 126-136; 1986.
- 86SI01. Sinha B. K., Singh Y., Krishna G. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP*): Reductive activation by NADPH cytochrome P-450 reductase. Biochem. Biophys. Res. Commun. 135: 583-588; 1986.
- 86ST01. Stock B. H., Schreiber J., Guenat C., Mason R. P., Bend J. R., Eling T. E. Evidence for a free radical mechanism of styrene-glutathione conjugate formation catalyzed by prostaglandin H synthase and horseradish peroxidase. J. Biol. Chem. 261: 15915-15922; 1986.
- *86TH01. Thornalley P. J. Theory and biological applications of the electron spin resonance technique of spin trapping. *Life Chem. Reports* 4: 57-112; 1986.
- 86TH02. Thornalley P. J., Bannister W. H., Bannister J. V. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adrianycin. Free Rad. Res. Comms. 2: 163-171; 1986.
- 86TU01. Turner III M. J., Rosen G. M. Spin trapping of superoxide and hydroxyl radicals with substituted pyrroline 1-oxides. J. Med. Chem. 29: 2439-2444; 1986.
- 86YO01. You J.-L., Fong F. K. Superoxide photogeneration by chlorophyll A in water/acetone. Electron spin resonance studies of radical intermediates in chlorophyll A photoreduction in vitro. *Biochem. Biophys. Res. Commun.* 139: 1124-1129; 1986.
- *87AU01. Augusto O. Spin-trapping studies of xenobiotic-mediated toxicity. In: *The Handbook of Biomedicine of Free Rudicals and Antioxidants*, (J. Miquel, H. Weber, and A. Quintanilha, eds.), In press, CRC Press, Boca Raton (1987).
- 87DA01. Davies M. J., Forni L. G., Shuter S. L. Electron spin resonance and pulse radiolysis studies on the spin trapping of sulphur-centered radicals. *Chem.-Biol. Interactions* **61**: 177-188; 1987.
- 87DA02. Davies M. J., Slater T. F. Studies on the metal ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. *Biochem. J.* 245: 167-173 (1987).
- 87HA01. Halpern A. Spin-trapping study of the radiolysis of CCl₄.
 J. Chem. Soc. Faraday Trans. 1 83: 219-224; 1987.
- 87MI01. Minotti G., Aust S. D. The requirement for ferric in the initiation of lipid peroxidation by ferrous and hydrogen peroxide. J. Biol. Chem. 262: 1098-1104; 1987.
- 870Z01. Ozawa T., Hanaki A. Spin-trapping of sulfite radical anion, So₃⁻, by a water-soluble, nitroso-aromatic spin-trap. Biochem. Biophys. Res. Commun. 142: 410-416; 1987.
- 87SI01. Sibille J.-C., Doi K., Aisen P. Hydroxyl radical formation

and iron-binding proteins. Simulation by the purple acid phosphatases. J. Biol. Chem. 262: 59-62; 1987.

- 87ST01. Stolze K., Mason R. P. Spin trapping artifacts in DMSO. Biochem. Biophys. Res. Commun. 143: 941-946; 1987.
- 87TR01. Trudell J. R. Ethyl acetate extraction of spin-trapped free radicals: A re-evaluation. Free Rad. Biol. Med. 3: 133-136 (1987).

Acknowledgments-I would like to thank Drs. Albano, Augusto, Aust, Bobst, Borg, Boss, Chignell, Church, Evans, Floyd, Halpern, Hill, Janzen, Kalyanaraman, Lion, Lown, Makino, Mason, Mctohashi, Motten, Niki, Nohl, Piette, Rehorek, Reszka, Riesz, Schaich, Thornalley, Tomasi and Van de Vorst for their suggestions. I would also like to thank Drs. Bors and Saran of the GSF for making their facilities available to me for this work.

APPENDIX-LIST OF ABBREVIATIONS

- AA Arachadonic acid
- Ac Acetate buffer
- AcN Acetonitrile
- Act Acetone
- AcPhHZ 1-acetyl-2-phonylhydrazinc
- Acyl radical 'C(=O)R
 - AOML Autoxidizing methyl linolcate
 - **B** Borate buffer
 - **BLM** Bleomycin
 - **BP*** Benzophenone triplet
 - C9.0 Caronate buffer, pH 9.0
 - Cit Citrate
 - CH Bicarbonate buffer
 - C/M 2:1 Chloroform and methanol in 2:1 ratio, Folch extraction. Typically the chloroform layer is examined in the ESR for any spin adduct signals.
 - CPE Controlled potential electrolysis
 - **CPZ** Chlorpromazine
 - CPZ-SO Chlorpromazine sulfoxide
 - D Deuterium or ²H
 - D₃O Deuterium oxide
 - DBPO Di-tert-butylperoxalate
 - DDEP 3,5-bis(ethoxycarbonyl)-4-ethyl-2,6-dimethyl-1,4-dihydropyridine
 - Decarb The carboxyl group of the amino acid is cleaved leaving a carbon-centered radical that is trapped
 - DMHB Dimethoxyhydrobenzoin or 1-(3,4-dimethoxyphenyl)-2-phenylethanediol
 - DMPO 5,5-Dimethylpyrrolidine-1-oxide or 5,5-dimethylpyrrolidine-N-oxide
 - DMPOX 5,5-Dimethyl-2-pyrrolidine-1-oxyl, an oxidation product of DMPO
 - DMSO Dimethyl sulfoxide
 - DODAC Dioctadecyldimethyl ammonium chloride
 - DOPA 3,5-dihydroxyphenylalanine
 - DOPBN C-(4-dodecyloxyphenyl)-N-tert-butylnitrone DTBN Di-tert-butyl nitroxide, a decomposition product of MNP trapped by MNP
 - ENDOR Electron Nuclear Double Resonance
 - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid
 - EPR Electron paramagnetic resonance
 - ESR Electron spin resonance
 - EtOH Ethyl alcohol
 - Folch Extraction using C/M 2:1. The chloroform layer is then examined in the ESR G Gauss
 - GA Glacial acetic acid
 - Gly Glycine

- **GSH** Glutathione
- GS' Glutathiyl free radical, sulfur-centered
- Halothane 2-bromo, 2-chloro, 1, 1, 1-trifluorocthane
- HANKS Hanks balanced salt solution
- HEPES N-2-hydoxyethylpiperazine-N'-2-ethanesulfonic acid
- KHB7.6 Krebs-Henseleit bicarbonate buffer, pH 7.6 HP Hematoporphyrin
 - HPD Hematoporphyrin derivative
- 15-HPETE 15-Hydroperoxy-eicosatraenoic acid
 - HRP Horseradish peroxidase
 - KRP7.4 Krebs-Ringer phosphate buffer, pH 7.4 L' As carbon-centered radical
 - LO' Lipid oxy radical, an alkoxy radical
 - LOO' Lipid hydroperoxy radical .
 - LPC Egg lecithin phosphatidylcholine
 - M MOPS buffer, see MS
 - MC Methylene chloride
 - MeOH Methyl alcohol
 - ML Methyl linoleate
 - MLOOH Methyl linoleate hydroperoxide
 - MNNG N-methyl-N'-nitro-N-nitrosoquanidine MNP 2-methyl-2-nitrosopropane = t-NB = NtB
 - MNPOL 2-methyl-2-nitroso-1-propanol
 - - M₄PO 3,3,5,5-Tetramethylpyrroline-N-oxide
 - MPP* 1-methyl-4-phenyl pyridinium ion MS Morpholinopropane sulphonic acid buffer, often referred to as MOPS
 - n-Bu n-Butyl
- n-BuOH n-Butyl alcohol
 - ND Nitrosodurene, 2,3,5,6-tetramethylnitrosobenzene
 - N/B MNP
 - **P**. Promazyl radical, i.e. i0-[3-(dimethylamino)-propyl]-10H-phenothiazin-2-yl
 - P(7.0) Phosphate buffer, pH 7.0
 - PAT Phenylazotriphenylmethane
 - PBN alpha-phenyl-N-tert-butyl nitrone
- PBNOx Benzoyl tert-butyl nitroxide, and oxidation product of PBN
 - PDT Phenyldiazonium tetrafluoroborate
 - PGS Prostaglandin synthetase
 - PHS Prostaglandin H Synthase
 - PMA Phorbol myristate acetate
- POBN α -(4-pyridyl-1-oxide) N-tert-butyl nitrone = 4-POBN
 - PP Pyrophosphate buffer
 - PQ Paraquat (methyl viologen)
- PrOH Propanol
- 2-PrOH Isopropyl alcohol
 - **PRQ** Primaquine

- RO' An alkoxy radical
- RPMI RPMI cell medium
- **RSV** Ram seminal vesicals
- **RSVM** Ram seminal vesical microsomes
- TAR Sodium tartrate. buffer
- TBA tetra-n-butylammonium
- TBABBu, tetra-n-butyl ammonium tetra-n-butylboride
- TBAP tetra-n-butyl ammonium perchlorate
- t-BB tert-Butylbenzenc
- TBHN Di-tert-butylhyponitrite
- t-BuOH tert-butyl alcohol
- TMAS Tetramethylammonium superoxide

- TME Tetramethyl ethylene
- TMPO 2,5,5-trimethylpyrroline-1-oxide
- t-NB tert-nitrosobutane = MNP
- TPPS Tetraphenylporphyrin sulfonate
 - TR TRIS buffer
 - T Tesla
 - $t_{1/2}$ First order half-life of the spin adduct
 - W Water
- W(10) Water at pH 10
 W(P7.4) Water, phosphate buffer, pH 7.4
 X.O. Xanthine oxidase