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Summary. The ascorbate anion is an endogenous water-soluble antioxidant that is present in
biological systems. The one-clectron oxidation ol ascorbate produces the ascorbale free
radical thal is easily detectable by electron paramagnetic resonance (EPR). even in room
temperature agueous solution, The ascorbate radical has a relatively long lifetime compared
1o other [ree radicals, such as hydroxyl, peroxyl, and carbon-centered lipid radicals. This
longer lifetime in conjunction with its relatively narrow EPR linewidth makes it casily
detectable by EPR. In this essay we describe the EPR detection of the ascorbate radical and
its use as a marker of oxidative siress.

Ascorbate, the terminal small-molecule antioxidant
Introduction

Ascorbate (Asc H) is ubiquitous, vet there is still much to be learned
about its chemistry, biochemistry, and biology. Ascorbate is an excellent
reducing agent [1-5]. It readily undergoes two consecutive, yet re-
versible, one-electron oxidation processes to form the ascorbate radical
(Asc’ ™) as an intermediate. Loss of a second electron yields dehy-
droascorbic (DHA) [1].
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Because Asc’'~ has its unpaired electron in a highly delocalized
m-system, it is a relatively unreactive {ree radical. These properties make
ascorbate a superior biological, donor antioxidant [3-17].
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Fig. |. The ascorbate radical doublet EPR signal in bovine lens increases upon exposure to
UV light, An approximate 1 cm? section of lens was placed into the well of an EPR tissue cell,
then positioned in an EPR TM,,, cavity, and subsequently exposed to UV light, Lower:
ambient Asc” —: Upper: Asc’ — during exposure to UV light. See the section on lens below for
details,

The ascorbate free radical is a strong acid having a pK, of —0.86
[18]. Thus, it will exist as a monoanion, Asc’ ~, over the entire biological
pH range.'

When biological fluids or tissues are examined by electron paramag-
netic resonance spectroscopy ( EPR), Asc™~ will most likely be observed.
See Figure 1 below. This is consistent with ascorbate’s role as the
terminal small-molecule antioxidant [3, 4].

Ascorbate thermodynamics and kinetics

As can be seen in Table 1, ascorbate is thermodynamically at the
bottom of the pecking order of oxidizing free radicals. That is, all
oxidizing free radials with greater reduction potentials, which includes,
HO*, RO", LOO", GS, the urate radical, and even the tocopheroxyl

'A note on nomenclature: Asc” — is usually referred Lo in briel as the ascorbate [ree radical,
The ending “ate” being used because it is & charged species. The shorl name ascorbyl radical
would be used for AscH’, the neutral protonated form of Asc” —. The ending “vI” being used
[or this neutral specics.
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Table 1. One-clectron reduction potentials at pH 7.0 for selected radical couples

147

Redox couple EY/m¥
HO", H'/H,0 +2310
RO, H'/ROH (aliphatic alkoxyl radical) + 1600
ROG", H*/ROOH {alkyl peroxyl radical) + 1000
GSJGS (glutathione) +020
PUFA’, H' [PUFA-H (bis-allylic-1T) + 600
HU" =, HYJUHS (Urale) + 590
TO, HY/TOH ({ Tocopherol) + 480
H,0., H*/H,0, HOY +320
Ascorbate’ —, H' fAscorbate monoanion 4 282
Fe{IIDEDTA/Fe{INEDTA +120
Q405 — 330
Paruguat/Paraquat’ — 448
Fe( THDFO/FE(INDFO { Desferal) — 450
RSSR/RSSR - (GEH) — 1500

— 2870

H.Ofe,

This table is adapted from references [3, 12, 19].

Tahle 2. Rate constants for the reaction of the equilibrium mixture of AscH, (AscH = Aset™

at pH 7.4 unless noted otherwise

Radicsl Ko, /M a7 (pH 7.4) Ref®
HO" 1w 10 [20]
RO (rert-butyl alkoxyl radical) 1.6 = 10° [21]
ROO (alky] peroxyl radial, e.g., CH,O0") 1-2 = |08 122
L Cocy 1.8 = 10" [23]
GS’ ( glutathiyl radical) 6 x 10° (5.6) [24, 25]
PUFA’ s
UH "~ {Urate radical) 1 % 108 [26]
TO' ( Tocopheroxyl radical) 2w lFE [4]
Ase' ™ (dismutation) 2w 1P [27]
CPZ* ' (Chlorpromazine radical cation) |4 107 {5.9) [25]
Fe( IINEDTAFe(INEDTA = 2
05 [HO; I [ [29, 30]
27 = 1P [31]
Fe( 111} DFO|Fel 11) DFO Very slow [32, 33]

ap complete summary of free radical solution kinetics can be found in [34].

Py were ynable to find data that addresses this reaction directly,
“Estimated k., for TO" when in g biological membrane,

9k is pH dependent, thus this is k. at pH 7.4,

Esimated from data in [35, 34, 63).

radical (TO"), can be repaired by ascorbate. Therefore, we have:

AscH- + X' —Asc" ™ 4+ XH,

where X* can be any of these oxidizing free radicals. From Table 2, we
see that the kinetics of these electron (hydrogen atom) transfer reactions
are rapid. Thus, both thermodynamically and kinetically, ascorbate can
be considered to be an excellent antioxidant.
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Although ascorbate itself forms a radical in this reaction, a poten-
tially very dangerous oxidizing radical (X) is replaced by the domesti-
cated Asc’ . Asc’ does not react by an addition reaction with O, to
form dangerous peroxyl radicals. Ascorbate (probably Asc’~, vida infra)
andfor Asc’~ appear to produce very low levels of superoxide [37, 38).
But by removing (%, superoxide dismutase provides protection from
this possibility [39, 40]. Thus, the biological organism is protected from
further free radical-mediated oxidations. In addition. Ase”~ as well as
dehydroascorbic can be reduced back to ascorbate by enzyme systems.
Thus, it is recycled. Ascorbate’s ubiquitous presence in biological sys-
tems in conjunction with its role as an antioxidant suggests that the
ascorbale free radical would also be present.

Equilibrivum

The ascorbate free radical will be present in solutions due to both the
autoxidation and the metal catalyzed oxidation of ascorbate. Forester et
al. observed Lhat Asc’~ can also arise [rom comproporlionation of
AscH™ and DHA [41],

AscH™ +DHA —2 Ascc~ 4+ H*?
[Asc ]*

= [AscH | [DHA]
Using EPR, they determined the equilibrium constant for this process
and noted that it was pH dependent. The equilibrium constant K was
found to vary from 5.6 x 107" at pH 4.0 to 5.1 x 1077 at pH 6.4. Later,
alter the acid-base properties of ascorbic acid and ascorbate free radical
were understood, it was then possible to develop an expression for K at
any pH value [27].
v [Ase JP[H ]+ {1 +[H*])/ 1051}
K== ~=20x%x 10-"* M2

[DI{A] [ASCHEJ:!LNL:AE‘
where pK, 1s the first ionmization constant of ascorbic acid and
[AscH, ] o0 18 the analytical concentration of AscH,, i.e., [AscH,),.., =
[AscH,] +[AscH ] +[Asc?*"]. [27, 41].

Using Asc”— as a marker of oxidative stress
Overview
The ascorbate free radical is naturally detectable by EPR at low

steady-state levels in biological samples, such as leaves from crops [42],

plasma [14, 43, 44], synovial fluid [45], skin [46, 47, and lens of the eye,
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vida infra. As oxidative stress increases in a system, the steady-state
Asc' ~ concentration increases [4]. These findings are consistent with
ascorbate’s role as the terminal small-molecule antioxidant (see Tab. 1),
It is proposed that ascorbate, i.e., the ascorbate free radical, which is
naturally present in biological systems, can be used as a noninvasive
indicator of oxidative stress [4, 48].

The ascorbate radical as a marker of oxidative flux has been shown to
be useful in the study of free radical oxidations in many biological
systems including mouse skin [46, 47, 49]. hepatocytes [50]. and 1s-
chemia reperfusion of hearts [51-53]%. Human sera and rat plasma
intoxicated with paraquat and diquat, known superoxide generators,
have increased ascorbate radical levels [36]. In animal experiments,
sepsis has also been shown to increase Asc’, indicating the involvement
of oxidative stress with this health problem [57]. Sasaki et al. have
investigated in human serum the use of Asc’ signal intensity in combi-
nation with measurements of AscH- and DHA as an indicator of
oxidative stress in human health problems that range from aging to
xenobiotic metabolism [58-62]. Taken together, these studies demon-
strate that the asorbate radical level in biological systems may be useful
for monitoring free radical oxidations in vivo, particularly when free
radical production is low and other methoeds are insensitive.

Absorption spectra

Pure ascorbic acid solutions are colorless as neither the diacid nor the
monoanion have significant absorbances in the visible region of the
spectrum. However, each has an absorbance in the ultraviolet region.

(1) Ascorbic acid: The diacid has an approximately symmetrical Gaus-
sian absorption spectrum with ¢, = 10800 M ' - em~' in aqueous
solution [[].

(2) Ascorbate monoanion: Compared to the diacid, the peak of the
absorption curve for the monoanion is red-shifted to 265 nm. A
wide range ol molar extinction coefficients have been reported,
ranging from 7500-20400 M~'-em~' [1]. We find that e,s=
14 500 M " - cm " best reflects our experimental observations when
doing experiments in near-neutral buffered aqueous solutions [63].

(3) Ascorbate radical: The ascorbate free radical has an approximately
symmetrical Gaussian shaped absorption curve with &y =

‘In a quite different approach Pietri el al. [54, 35] have used Asc™— as a probe for plasma
ascorbate concentrations. In their approach, a 1:1 mixture of plasma and dimethylsulloxide is
exgrnined for Asc” — by EPR. They claim that the Asc” — is an index ol the transient changes
in plasma ascorbate status during ischemiafreperfusion. Whereas, in our studies the Asc™ —
levels reflect the ongoing [ree radical flux in the system being examined [4, 47, 53]
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3300 M ' - em~ ' and a hall-width at half~-maximum of about 50 nm
[27]. With this small extinction coeflicient, Asc™~ will not be observ-
able by standard UV-VIS spectroscopy in steady-state experiments.

(4) Dehydroascorbic: Dehydroascorbic (acid) has a weak absorption at
300 nm, £45=720 M~"-cm~! [1].

EPR Deteciion of the ascorbate free radical

The ascorbate free radical is usually detected by EPR as a doublet signal
with a" = 1.8 G, AH_, = 0.6 G and g = 2.0052, Figure 1. However, each
line of the ascorbate doublet is actually a triplet of doublets,
a=1.76 G, a'"(2) =0.19 G, and a'® =0.07 G [64].

In most biological experiments where the Asc’~ EPR signal will be
weak, a compromise is made in the choice of modulation amplitude.
The usual choice is to sacrifice resolution of the hyperline structure for
improved sensitivity. We find that a modulation amplitude of ~0.65 G
maximizes the ascorbale [ree radical double peak-to-peak signal ampli-
tude [63].

The EPR power saturation curve ol Asc’ in room temperature
aqueous solutions shows that saturation effects begin at =16 mW and
maximum signal height is achieved at 40 mW nominal power when
using an aqueous fat cell and a TM cavity, see Figure 2. Thus, 1if
quantitation of the Asc’~ levels 1s desired, appropriate corrections lor
saturation effects must be included in the caleulations.
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Fig. 2. EPR Power Saturation Curve for Asc’ — . Signal heights are arbitrary units. Asc® — was
observed in a demetalled 50mM pH 7.8 phosphate buffer containing 10 mM  ascorbate.
Bruker ESP-300 instrument settings were, 0.65 modulation amplitude: 10 G/ 167 5 scan rate;
0167 s ime constant [63].
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Applications
Asc™~ in solution

Stock ascorbate solutions

In our work with ascorbate in solution we have found that the quality
of the stock solution determines the quality and reproductivity of the
results. We prepare ascorbate stock solutions using only the diacid. It is
prepared as a 0.100 M stock solution (10 mL) using high purity water.
This solution is colorless, having a pH of 2. It is stored in a
volumetric flask with a tight-fitting plastic stopper, thus oxygen is kept
from the solution during long-term storage. As the solubility ol oxygen
in air-saturated water is =0.25 mM, the solution will become anaerobic
with loss of < 1% of the original ascorbate. If the flask 1s indeed clean,
we have found that the solution can be kept for several weeks without
significant loss of ascorbate due to the low pH and lack of oxygen. The
appearance of a yellow color is an indication of ascorbate deterioration.
We avoid the use of sodium ascorbate as it invariably contains substan-
tial quantities of oxidation products as evidenced by the yellow color of
the solution. [63].

Autoxidation and metal catalyzed oxidations

Before beginning this discussion it must be understood that we use the
term autoxidation to mean oxidation in the absence of metal catalysts
[66]. The term oxidation is used more broadly and includes all oxida-
tions, with or without catalysts.

Ascorbate is readily oxidized. However, the rate of this oxidation 18
dependent upon pH and the presence ol catalytic metals [32, 33, 35, 36,
63, 67—70]. The diacid 1s very slow to oxidize, Consequently, at low pH,
i.e., less than 2 or 3, ascorbic acid solutions arc quite stable, assuming
catalytic transition metal ions are not introduced into the solutions.
However, as the pH is raised above pK, (4.2), AscH becomes domi-
nant and the stability of the ascorbate solution decreases. This loss of
stability is usually the result of the presence of adventitious catalytic
metals (on the order of 1 ©M) in the buffers and salts that are typically
employed in studies at near neutral pH [63]. For example, we have
found that in room temperature aerated, aqueous solutions at pH 7.0
(50 mM phosphate buffer) 10-30% ol 125 M ascorbate is lost in just
15 min. This large variation is the result of different sources and grades
of phosphate used in the buffer preparation. However, if care is taken to
remove these trace levels of transition metals, this rate of loss can be
lowered to as little as (.05%/15 min [63], thus demonstrating the ex-
treme importance of metals in controlling ascorbate stability. At pH 7.0
we have set an upper limit for the observed rate constant for the
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Fig. 3. Background [Asc’—] ws. pH: Each solution was made with 50 mM demetalled
phosphate buller that contained 50 M desferoxamine mesylate, for al least 12 hours. To
these solutions 500 ;¢ M ascorbale was added and the EPR spectra were collected. The points
represent the Asc — concentration observed in the second of three EPR scans, where the
values had a standard deviation of less than | nonomolar (adapted from [4]). These data
demonstrate the importance of pH control. At pH values greater than =8 [Ase” —] is not 4
pood indicator of oxidative stress, but at near neutral pH it is excellent.

oxidation of ascorbate to be 6 x 10-7 s~' under our experimental condi-
tions [63]. However, even in carefully demetalled solutions as the pH is
varied the rate of oxidation increases, Figure 3 [4].

We attribute this increase in rate at higher pH values to the increasing
concentrations of the ascorbate dianion. Williams and Yandell have
made an estimate based on the Marcus theory of electron transfer that
the ascorbate dianion would undergo true autoxidation at a significant
rate [38].

k= 10PM-g!
Asc®~ 4+ 0, — Asc" + 05

Qur experimental results are consistent with these estimates [4, 33, 63].
Marcus theory would predict that the rate of the true autoxidation of
AscH ™ would be much slower.

Thus, at pH =~ 7.4 the rate ol autoxidation of an ascorbate solution is
determined predominantly by Asc’.

Typical buffers employed in biochemial and biological research have
on the order of 1 gM 1ron and <1 pM copper [63]. But because copper
is =80 times more efficient as a catalyst for ascorbate oxidation than
iron, it is the adventitious copper that is the biggest culprit in catalyzing
ascorbate oxidation [63].

We have developed two assays that take advantage of this chemistry:

Iron analysis at the nM level

Fe-EDTA is an excellent catalyst of ascorbate oxidation, while Cu-
EMTA s n smaev #nnaer sataheot Wa hava fAanmAd that unth  Aaeafind
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Fig. 4. These data were gathered using EPR spectroscopy to quantitate the steady state level
of Asc’ =, The curves were obtained in 50 mM demetalled phosphate buffer, pH 7.40 with
250 uM EDTA (@) or 50 pM Desferal ( 4 ) with 125 M ascorbate present {adapted from [33]).

attention to detail to ensure that all glassware, pipettes and pipette tips
are scrupulously clean, we can estimate iron levels in phosphate buffer
to a lower limit of = 100 nM using UV-Vis spectroscopy [63]. However,
using EPR spectroscopy this limit can be as low as =5 nM [33], Figures
4 and 5. For the EPR method of analysis we add EDTA to the solution
to be assayed. This converts the iron to a “'standard™ catalytic form. We
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Fig, 5. This figure is an expansion of the 0-1 gM [Fe(TIT)] region of Figure 4. The experi-
mental conditions are the same as in Figure 4. The curves were oblained in 30 mM demetalled
phosphate buffer, pH 7.40 with 250 oM EDTA (@) or 50 uM Desferal [ &) with 125 4 M
ascorbale present [adapted from [33]).
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then introduce ascorbate and determine by EPR the steady-state con-
centration (i.¢., signal height) of Asc®~. From a standard curve we can
then estimate the iron concentration from =5nM-— =10uM. To
achieve estimates at the lowest end of this range, extreme care must be
taken with each step and the EDTA must be pure; recrystallized at least
three times using methods that will produce the best result. The stan-
dard curve must be obtained using the same bufler/salt system and exact
pH. This buffer{salt must be demetalled using a chelating resin such as
Chelex 100 [63]. This method is useful if there is interference from
standard colormetric assays ol iron, or if only “loosely bound™ iron is
to be estimated [71].

For the UV visible method, the experiment is similar except the rate
of loss of ascorbate is followed at 265 nm. This rate 1s plotted vs.
Fe(IIDEDTA concentration for the standard curve, from which un-
known concentrations ol tron are estimated.

Remaoval of Trace Metals

We have also found that ascorbate is an excellent tool to ascertain the
effectiveness of adventitious catalytic metal removal from near-neutral
bufTer systems. In this method we follow the loss of ascorbate due to
oxidation by monitoring its absorbance at 265 nm. In our standard test
we add =3.5 uL of 0.100 M ascorbic acid solution to 3.00 mL ol the
buffer in a standard 1 cm quartz cuvetie, This results in an initial
absorbance of 1.8, The loss of ascorbate 1s followed for 15 min. A loss
of more than =0.5% in this time indicates significant metal contamina-
tion, (If using a diode array spectrometer, interrogate the solution only
a few times as the UV radiation near 200 nm will itself initiate ascorbate
photooxidation.) [63, 72].

Plasma

The free radical initiator AAPH (2,2 -azo-bis( 2-amidinopropane) dihy-
drochloride) undergoes thermal decomposition at a constant rate (at a
fixed temperature) producing carbon-centered sigma radicals that react
with O, at nearly diffusion-controlled rates yielding peroxyl radicals
[73]. Thus, AAPH, in an oxygen-containing system, produces a constant
flux of oxidizing [ree radicals that can oxidize ascorbate or produce spin
adducts with the spin trap DMPO (5,5-dimethylpyrroline-1-oxide).
When using AAPH as a source of oxidizing radicals in plasma a linear
increase in [Asc’ ], is seen with increasing concentrations of AAPH
(Fig. 6). This plasma sample contained 58 uM ascorbate, a value typical
ol physiological conditions. Thus, in plasma [Asc "], is indeed an
excellent indicator of oxidative stress. [4].

Cells
[ron and ascorbate are well-known as a prooxidant combination that
will initiate lipid peroxidation [9, 74-79]. Lipid-derived radicals from
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Fig. 6. Azo Initiator-Produced Asc’ — Radicals in Plasma: Asc” — EPR signal height {arbi-
trary units) versiy AAPH concentration. The plasma contained 58 g M ascorbate and varying
amounts of AAPH [4]

cells have been detected using EPR spin trapping techniques when cells
are exposed to iron and ascorbate [78, 79]. The introduction of edelfos-
ine, an ether lipid drug being investigated for use in cancer treatment, to
an L1210 murine leukemia cell suspension with 20 ¢M iron and 100 uM
ascorbate present, results in a burst of Asc”~ production within 1-2 min
after the addition. This burst of Asc”~ production corresponds with an
increase in the rate of cellular lipid peroxidation as observed by EPR
spin trapping, consistent with [Asc™ ], being a real time reflection of the
oxidation flux in the system [78].

Axe™ = i fissues

To examine tissues by EPR, e.g., skin, lens or samples whose viscosity
precludes the use of an aqueous EPR flat sample cell. tissue cells
(sometimes called cavity cells) such as produced by Wilmad Glass Co.
(Buena, New Jersey) are available. These cells generally have a 0.5 mm
depth sample cavity well and two supporting rods. In our experience,
those cells with two stems are prone to breakage. Thus, we use a one
stem tissue cell, 1.e., no lower positioning rod. This reduces the incidence
of breakage and facilitates tuning of the sample in the EPR cavity. A
cover slip fits over the sample cavity well. Phosphor-bronze clips are
provided to hold the cover over the well. However, we find that to
prevent potential scraping of the inside of the EPR cavity with these
clips that Parafilm ties can be used to provide an even more secure fit.
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Fig. 7. EPR and light source setup for EPR tissue cell experiments, The 305 filler cuts ol
those wavelengths below =300 nm, The IR filter is a waler-filled large diameter {30 mm)
cylindrical, quartz UV-visible cell having a 50 mm path length. Our light source is an Oriel
Photomay system with a 150 W Xe lamp. This system requires no special air handling due 1w
ozome production. For our skin and lens experiments the lamp was operating at 3 mW cm?.

We find Parafilm to be an excellent tool in EPR experiments as it yields
no significant EPR signals. These ties are made by cutting = 2 mm wide
strips of Parafilm and then wrapping them tightly around the cell and
cover plate at the indentions that are provided for the clips. A diagram
of the experimental setting is given in Figure 7.

Skin

Whole skin harvested from SKH-1 hairless male mice (Charles River
Laboratories, Portage, Michigan) is cut into EPR usable pieces
(221.0 cm?, epidermis and dermis), placed in a Wilmad Glass Co.
(Buena, New Jersey) one stem tissue cell, and positioned in the EPR
cavity. EPR spectra are oblained at room temperature. The EPR
spectrometer settings for the ascorbate radical experiments are: mi-
crowave power, 40 milliwatts; modulation amplitude, 0.66 G; time con-
stant 0.3 s; scan rate 8§ G/41.9 s; receiver gain, 2 x 10° The epidermal
surface of the skin is exposed to UV light while in the EPR cavity. The
light source is a Photomax 150 W xenon arc lamp (Oriel Corporation,
Stratford, Connecticut) operating at 32 W; wavelengths below 300 nm
are filtered out using a Schott WG 305 filter (Duryea, Pennsylvania).
Infrared radiation from the light is removed by a 5 ecm walter filter. The
filtered light fluence rate, including the visible wavelengths, as measured
using a Yellow Springs Instrument (Yellow Springs, Ohio) model 65A
radiometer with a 6551 probe, was 3 mW/em?, assuming the cavity grid
transmits 75% of the incident light.

Lens

There is considerable evidence that UV-induced epithelial damage can
be related to lens opacity and subsequent cataract formation [80]. The
involvement of free radicals in cataract formation has been suggested
[81, 82]. Ascorbic acid is clearly of importance as an antioxidant in the
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Fig. & Asc’ — in bovine lens subjected to UV light-induced oxidative stress. The Ase’ — signal
height is shawn in arbitrary units. The lens was exposed to the UV light after collection of the
third data point, The light was turned off after collection of the seventh data point. The light
source and EPR experimental setup is depicted in Figure 7.

lens of the eye, present at steady-state concentrations of 1-2 mM in the
human lens and adjacent aqueous and vitreous humors. To examine
Asc levels in bovine lens tissue, lens tissue is placed in an EPR tissue
cell and irradiated as described above in the skin experiments. A low
steady-state level ol the ascorbate free radical is detectable by EPR in
the lens of the bovine eye. During UV photooxidative stress the levels of
ascorbate free radical significantly increase (Fig. 8). When the light is
turned off, the ascorbate free radical signal returns to baseline levels.

Whole bovine lens was cut into EPR usable pieces ( =~ 1.0 cm?), placed
in a Wilmad Glass Co. (Buena, New Jersey) one stem tissue cell, and
positioned in a TM,,, EPR cavity. EPR spectra were obtained at room
temperature using a Bruker ESP 300 spectrometer operating at
9.74 GHz with 100 kHz modulation frequency. The EPR spectrometer
settings for the ascorbate radical experiments were: microwave power,
40 milliwatts; modulation amplitude, 0.63 G; time constant, 1.3 s; scan
rate, 6 G/167.7 s; receiver gain, 2 x 10°. While in the EPR cavity, the
lens was exposed to UV light after the third consecutive scan, and
turned off after the seventh scan.

Asc' ™ in vive
Rat in vivelex vive Asc’

Mori et al. [83, 84] have observed Asc'~ in the circulatory blood of
living rats with EPR. In these experiments a | mm tube was used lo
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Fig. 9. Schematic of EPR sclup for moniloring of Asc” = in whole blood from the canine
myocardium ex pivo. Note that the blood is returned to the animal. The lower end of the Mat
cell {Wilmad WG-813) is connected to the coronary venous cannula using thin (0.5 mm ouler
diameter) Teflon tubing of =1 meter in length. The end of the Teflon tuhing is placed
complelely into the lower stem of the Mat cell so the blood emerges directly mto the bollom
of the flat portion of the cell. The pump is an 1V inlusion pump; we draw from the top of the
fal cell and push into the LEV, The How rate of the pump is set 1o 600 mL/hour. {(RFA, right
fernoral artery; RFY, right femoral vein; LFA, lelt Temoral vein; LAD, left anterior descend-
ing coronary artery; GOV, great cardiac vein; and TV, intravenous.) The arrows indicate the
direction of blood Now,

make a shunt from a femoral artery of the rat to an EPR cell positioned
in an EPR cavity; the blood was returned to the rat by a continuation
of the shunt from the EPR cell back to a femoral vein of the animal, In
these experiments, the investigators demonstrated that introduction of
iron, as ferric citrate, to the rat results in an increase in the circulating
[Asc”~]... This increase in [Asc’ | correlates with other parameter of
oxidative stress.

Canine n vivolex vivo myocardial ischemia[reperfusion studies

Free radical mediated oxidative stress 1s now thought to be a significant
source of tissue damage during myocardial ischemia/reperfusion
episodes. We have developed a means to monitor by EPR whole blood
ex vive from an open-chest canine method ol myocardial ischemia/
reperfusion [53]. Using this method we can monitor for the presence of
Asc in myocardial blood within =4-55 from leaving the heart. By
following the intensity of the Asc’~ signal versus time we can determine
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Fig. 10. These data demonstrate the increase in [Asc’ — ] during ischemia/reperfusion episodes.
The pereent rise is the change in the area under the curves of plots of [Asc” —] vs. time; the

areas were delermined using the Simpson integration method; the limits bheing from the
bepinning of reperfusion through the thirty minute time point [53]. Both the 5 mmn oeclusion
{ < 134 + 73%) and the 20 min occlusion + SODJCAT experiment { + 136 + 94%) were slatisti-
cally different p = 0.005 than the 20 min occlusion (4440 + 236%) experiments.

the changes in oxidative stress within the myocardium with various
interventions during ischemia reperfusion episodes [53].

These studies have used an open-chest canine model ( =20 kg) model
of ischemia. General anesthesia 1s achieved with fentanyl droperidol.
Briefly, a midsternal thoracotomy is performed and the heart exposed.
A cannula is manipulated into the coronary sinus. Blood is withdrawn
rom the coronary sinus and passed through the EPR spectrometer,
which is positioned next to the animal; we have refined this system so
that the blood is scanned by EPR within =4-5 s of withdrawal from
the coronary sinus, Figure 9. At the beginning of the experiment we
administer 1 gram of vitamin C as an intravenous bolus, followed by an
intravenous infusion (usually 3.8-15.2 mg/min) in order to attain a
steady-state arterial concentration of ascorbate free radical. Arterial
blood is also initially passed through the EPR spectrometer to demon-
strate the steady-state arterial level, which is usually ~14nM. The
venous level is usually =8 nM. The blood is periodically rescanned to
further demonstrate that the arterial level has not changed (if it has
changed, the TV infusion of ascorbate is adjusted as necessary). In spite
of this, if the arterial level of AFR is shown to vary more than 15%
during a study, that study is discarded. During the experiment the
coronary venous blood is continuously scanned to determine ascorbate
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free radical signal intensity: the-amplitude of the ascorbate radical signal
is linearly proportional to the concentration of the radical, thus permit-
ting real-time quantitative AFR determination, a demonstrated index of
oxygen free radical generation.

In this method we have observed that 20 min ol regional ischemia will
increase the integrated Asc” ~ signal intensity by over 400% upon reper-
fusion, Figure 10. A 5-min occlusion produced substantially less Asc’
superoxide dismutase (SOD) and catalase (CAT) are able to blunt the
20-min reperfusion oxidative stress, bringing it to near the 5-min occlu-
slon results,

The disadvantage of this method is that we lose information on the
exact radicals being produced. However, the big advantage is that we
are able to get a relative estimate on the total free oxidative flux, in real
time. Because many types of radicals are produced during the oxidative
cascade no one primary radical can be a reliable marker of the total
radical flux. However, ascorbate, being at the bottom of the pecking
order for oxidizing free radicals, can serve as a marker of the total free
radical oxidative flux in a carefully controlled system.

Conclusion

Ascorbate is well known for its reducing properties. As such, it is an
excellent antioxidant; it is thermodynamically at the bottom of the
pecking order for oxidizing free radicals [3], thus we view it as the
terminai small-molecule antioxidant [4]. Ascorbate protects cells from
oxidative stress by scavenging [ree radicals and recycling other antioxi-
dants, such as vitamin E. We have described here how using EPR, the
ascorbale free radical can be used as a maker of oxidative stress,
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