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Abstract 
The nitric oxide synthases (NOS) are hemoproteins with a cytochrome P450-like active site that catalyze 

the oxidation of arginine to nitric oxide and citrulline. Different isoforms of this enzyme has been 

discovered: eNOS, iNOS, nNOS and mtNOS. However, only first three were shown to be genetically 

different. This paper contains a brief comparison of these isoform and discussion of their catalytical 

mechanism. Second part of the paper specifically focuses on NOS III. Structural features, different 

levels of regulation and biological significance of this enzyme is discussed. 

 

Introduction 
Nitric Oxide Synthases are the main mammalian enzymes that produce nitric oxide. These enzymes 

were shown to catalyze the following reaction [1]. 

    (1) 

  

Traditionally, three isoforms of NOS were identified in mammalian systems: NOS-I, NOS-II and NOS-

III. They are encoded by different genes and have different tissue distribution and regulation. Recently 

fourth, mitochondrial isoform has been identified [36]. However this isoform was shown to be a subtype 
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of nNOS [36]. This paper will focus only on three “classic” isoforms. The main features of these 

isoforms are summarized in Table 1. 

Table 1. 

Isoform NOS I (nNOS) NOS II (iNOS) NOS III (eNOS) 

Cellular localization Cytosolic Cytosolic Membrane bound 

Tissue distribution  Nervous system, 

skeletal muscles 

Ubiquitous 

 

Vascular endothelium, 

airway epithelium 

Regulation Ca2+/CaM Cytokine inducible; 

Ca2+ independent 

Ca2+/CaM 

Expression Constitutive Inducible Constitutive 

Gene structure 29 exons, 28 introns 26 exons, 25 introns 26 exons, 25 introns 

Chromosomal location 12q24.2-12q24.3 of 

chromosome 12 

17cen-q11.2 of 

chromosome 17 

7q35-7q36 of 

chromosome 7 

References [17], [18] [19], [20] [22], [23] 

 

Structure of NOS 
NOS is a very complex enzyme that contains several cofactors and heme in the active site. Active NOS 

has a dimeric form (Fig 1).  

 
Fig 1. NOS dimer [Crane BR 1998] 

 
 Fig 2. Domain structure of NOS dimer [online sources]  

Each monomer has three domains: reductase domain, calmodulin binding domain and oxygenase 

domain (Fig 2, Fig 3). Reductase domain consists of two subunits, one that binds NADPH and FAD and 

the other that binds to FMN [24]. NADPH acts as a two electron donor. FAD and FMN serve as an 

electron storage pool and transfer agent. Ca2+/Calmodulin binding domain is very small (approximately 
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30 aminoacids). Oxygenase domain contains heme group, substrate binding site and binding site for 

tetrahydrobiopterin. It was shown that dimer interface contains a zinc tetrathiolate center, located at the 

bottom of the dimer interface. The zinc ion is tetrahedrally coordinated to two cysteins from each 

subunit. Structure of some cofactors for NOS is shown on figure 3. 

 

  
 

Fig. 3 Structure of cofactors for NOS [online sources] 

 

Catalytical mechanism of NOS 
NOS catalyzes two sequential, mechanically distinct, heme based reactions. The first step is the 

hydroxylation of the amide nitrogen atom of arginine. The second step is conversion of NHA to 

citrulline and NO. NADPH serves as an electron donor for both reactions. 

 

Fig. 4. Redox potential and direction of 

electron flow in nNOS 

Upon binding of Ca2+/calmodulin, FAD transfers 

reducing equivalents from NADPH to FMN, which then 

reduces heme in oxygenase domain of opposite monomer 

(Fig. 4). The ferrous form of the heme binds oxygen to 

form stable oxy complex (Fig 5). Dissociation of this 

species is a source of superoxide anion in uncoupled 

NOS. The feroxy complex is then protonated and the 

oxygen – oxygen bond breaks to form a very active 

intermediate, that performs the two electron oxidation of 

arginine to NHA. Second oxidation reaction involves 

formation of ferric-peroxy intermediate that catalyses 

this reaction. Ferric iron is reduced to ferrous and oxygen 

binds.  
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This form of the enzyme then reacts directly w  

complex. The NHA radical and the peroxy com

mechanism to generate citrulline and NO and r

 

Hexacoordinate 
 

Fi ion 

 

complex. The NHA radical and the peroxy com

mechanism to generate citrulline and NO and r

 

Hexacoordinate 
 

Fi ion 

ith NHA to form an NHA radical and haem-peroxy

plex then react with each other in a “radical rebound” 

egenerate the ferric haem iron [24] 

 

Pentacoordinate

th NHA to form an NHA radical and haem-peroxy

plex then react with each other in a “radical rebound” 

egenerate the ferric haem iron [24] 

 

Pentacoordinate

  
 

  
 

Fig 5. Catalytical mechanism of NOS [Boga et al 1998] Fig 5. Catalytical mechanism of NOS [Boga et al 1998] 

 

Endothelial NOS 
Endothelial NOS is the main source of NO in vasculature. De

pathogenesis of many cardiovascular diseases: atherosclerosis, hypertension, diabetes, 

hypercholesterolemia, hyperhomocysteinemia etc [24]. 

The eNOS knockout mouse (eNOS-/-) have the following phenotype: hypert

activity, increased neo-intimal proliferation and an increased contractile response to 

agonists. Furthermore, it has been described that these animals have developm

abnormal aortic valves, and limb abnormalities. These mi

capacity and a poor response to growth factor-stimulated angiogenesis. ENOS -/-

g 6. Haem iron coordinatg 6. Haem iron coordinat

regulation of eNOS is involved in 

ension, poor vasorelaxing 

-adrenergic 

ental growth problems, 

ice also have 

ce also exhibit impaired wound-healing 

m

paired endothelium-dependent vasodilation in the pulmonary circulation [24]. 

man eNOS gene have been identified. Two single 

nucleotide substitutions have been identified within the introns, one in intron 18

tron 23, Gly10Thr. Some variable repeats have also been located in introns 4, 13, and 23. Although a 

im

Three different polymorphic variations in the hu

, Ala27Cys, and one in 

in
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normal functional enzyme is formed, the polymorphisms could lead to altered transcription and/or 

processing rates, thereby interfering with normal enzyme function. Individuals with a polymorphism in 

intron 13 have a higher risk of coronary artery disease [24]  

The endothelial nitric oxide synthase (eNOS) is a dimer consisting of two identical monomers of 134 

kD. The gene encoding for the eNOS monomer is located on chromosome 7q35-36 and contains 26 

exons, spanning 21 kb. Domain structure of eNOS is shown on the Fig 5.  

itoylation and myristoylation sites.  

r targeting of eNOS to plasma membrane. 

gulation that are summarized in the Fig 8. 

Fig. 8 Different levels of eNOS regulation [17] 

The eNOS enzyme is only fully functional in a dimeric form. Dimerization of eNOS starts with the 

binding of haem without haem, the eNOS enzyme exists only as a monomer. The binding of haem and 

the formation of a dimer make it possible for tetrahydrobiopterin to bind to the eNOS dimer, which leads 

 
Fig 7. Domain Structure of eNOS [25]. 

The main difference between this isoform of NOS is palm

Palmitoylation and myristoylation are required fo

Endothelial NOS has different levels of re
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to the formation of a stable dimer. Stabilization of the dimer is also dependent on zinc ions, which 

maintain the integrity of the BH4 binding site. The functional activity of the eNOS dimer is dependent 

on the number of BH4 molecules bound. An eNOS dimer without BH4 is capable of producing O2
-; the 

binding of one BH4 molecule results in an eNOS dimer capable of producing both NO and O2
-. High 

levels of BH4 result in a saturated dimer, which acts purely as an NO synthase [24]. 

It is thought that most eNOS is located in the caveolae, where it is bound to caveolin, a resident coat 

protein. The caveolin binding leads to inhibition of eNOS activity by interfering with the CaM binding 

and electron transfer to the haem subunit. A rising intracellular level of free Ca2+ causes the formation of 

Ca2+/CaM complexes, resulting in the binding of the enzyme and consequently the dissociation of 

caveolin. The eNOS enzyme is now activated and remains so until intracellular Ca2+ levels drop and the 

Ca2+/CaM complex is subsequently replaced by caveolin. The activated eNOS enzyme is productive as 

long as the substrates L-arginine, oxygen, and NAPDH are present. Altered lipid composition in the 

caveolae can displace the eNOS enzyme, thereby altering the eNOS activation process. 

No specific inhibitors for eNOS are available so far. The most often used inhibitor for all isoforms of 

OS is L-NAME. 

lated 

N

 

Conclusions 
It is difficult to underestimate significance of endothelial NOS. This enzyme is the major source of NO 

in vasculature. It is one of the most complex enzymes ever known. Activity of eNOS could be regu

on different levels. Impairment of eNOS function is involved in pathogenesis of many diseases. 

Studying eNOS could have a lot of therapeutic implications. Endothelial NOS gene therapy could be 

used a potent therapeutic tool in the future. 
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