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GR: Glutathione disulfide reductase 

GSH: Glutathione  

Prx: Peroxiredoxin 

ROS: Reactive oxygen species  

Trx: Thioredoxin 

TR: Thioredoxin reductase 
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Abstract 
 
 
 Reactive oxygen species produced by intracellular biochemical reactions as well 

as by external agents like ionizing radiation can cause serious damage to cellular 

components. The antioxidant defense system of the cell protects them from harmful 

effects of ROS. A new family of peroxidases has been recently identified that are seen 

to be present in organisms from all kingdoms. This enzyme was first discovered in yeast 

as a 25-kDa enzyme that protects cells against oxidative damage [1]. As of now there 

are six isoforms of Prx identified in mammalian cells, and a lot of its properties and 

functions are yet to be studied. This review will focus on the mammalian Prx family, its 

structure, classification and mechanism of action.   

 
 

Introduction 
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Organisms that respire aerobically are constantly being exposed to intracellularly 

as well as extracellularly generated, reactive oxygen species. These include superoxide 

anion, hydroxyl radical and hydrogen peroxide. Antioxidant enzymes like superoxide 

dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx) scavenge the 

reactive oxygen species and protect cells from the deleterious effects of oxidative 

stress. A new family of proteins has been identified in most organisms, which is also 

shown to possess antioxidative function. Initially named thioredoxin peroxidases (TPx), 

these are now commonly known as peroxiredoxins (Prx). So far six isoforms have been 

identified in mammals. Prx enzymes with molecular size of 20-30 kDa, contain a 

reactive Cys in the N-terminal conserved domain. The three-dimensional crystal 

structures of Prx from many organisms have been determined [2,3]. Figure 1 shows the 

crystal structure of Prx5 indicating the positions of the critical cysteine residues. The 

catalytic Cys (Cys47) forms a sulfenic acid reaction intermediate during peroxide 

reduction reactions. 

 

 

 

 

 

 

 

 

Cys47 

Cys72 

Cys151

Figure 1. The 1.5 °A resolution crystal structure
of human Prx5 in its reduced form. Positions of
the N-terminal (Cys47) and C-terminal (Cys151)
cysteines are shown. Prx5 does not form a dimer
following its reductase activity, but instead an
intermolecular disulfide bond is formed between
residues Cys47 and Cys151. Due to a 13.8 °A
distance between the two cysteines, the disulfide
bond formation would require major
conformational changes. Adapted from [3]. 

77:222 Free Radicals in Biology and Medicine  Paper III 



SG Menon Peroxiredoxins 4 

Classification 

All the six isoforms of Prx share striking amino acid sequence homology and their 

peroxidase activity all depend on thioredoxin (Trx) and/or glutathione (GSH). Inspite of 

high sequence homology, each is unique, in that they have different catalytic 

mechanisms, different expression patterns and also are expressed in different 

subcellular compartments of the cell. Crystallographic analyses have shown that almost 

all of them possess Trx-like domains. Figure 2 shows a schematic representation of all 

six members of the Prx family seen in mammalian cells, including their intracellular 

localization, and associated electron donor.  

 

 

 

 

 

 

 

 

Figure 2.  Schematic representation of the mammalian Prx family. Position of the critical 
catalytic cysteine is shown, in addition to localization in the cellular compartments, and the 
subunit association [4]. 
 

All six isoforms have a Cys residue in its active site near the N-terminus. Prx1 to Prx4 

contain another Cys in the C-terminus. The C-terminal Cys in Prx5 is located more in 

the C-terminal region of the protein, while Prx6 contains only one critical Cys in its N-
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teminal region. As seen from the subcellular distribution of the various isoforms, Prx is 

seen in all locations of ROS production. 

Mechanism of Action 

One of the main functions of the Prx family is the reduction of peroxides including 

H2O2  (Km < 20 µM) [6]. Initially, it was thought that the peroxidases reaction was 

specifically Trx-dependant. Prx I, II, and III proteins each catalyzed the H2O2-dependent 

oxidation of NADPH in the presence of the Trx system (Trx, TR and NADPH) but 

showed no H2O2-dependant NADPH oxidation when the Grx system (Grx, GSH, GR 

and NADPH) was the electron donor [6]. However, it was later found that GSH functions 

as an electron donor for Prx6 (Km (app) = 180 µM) [7] and substitution with Trx system 

made Prx6 functionally inactive. Thus there seems to be specificity for the electron 

donor within different members of the Prx family. 

 

 

 

 

 

 

 

 

 

Figure 3. The reaction mechanism of Prx. As seen, both GSH as well as Trx can function as 
electron donors, however while Trx system functions as electron donor for Prx1 to Prx3 
isoforms, the Grx system seems to be the electron donor for Prx6 [4]. 
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Since active site Cys is the main reaction center for peroxidase reaction, different 

reactions have been proposed based on the presence of the number of Cys in the 

enzyme. Prx1 to Prx4 contain two critical cysteines and form a homodimer with a head 

to tail association. Figure 4 represents the reaction mechanism proposed for this group 

of Prx enzymes. The N-terminal Cys forms sulfenic acid intermediate after reacting with 

peroxides. It then reacts with the C-terminal Cys and forms an intermolecular disulfide 

bond.  

 

Figure 4. Reaction mechanism of Prx 1 to Prx4 family members with peroxides. The catalytic 
N-terminal Cys reacts with peroxides and forms Cys sulfenic acid (-SOH), which reacts with the 
C-terminal cysteine of the other protein and forms an inter-molecular disulfide bond. The Trx 
system provides the electrons and reduces the cysteines (-SH) [4]. 
 
  

Prx5 is present as a monomer and hence its reaction mechanism is proposed to be 

slightly different. After formation of the sulfenic acid intermediate, the N terminal Cys-

SOH reacts with the C-terminal Cys of the same protein, forming an intramolecular 

disulfide bond (Figure 5). 
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Figure 5.  Reaction mechanism for Prx5. Reaction with H2O2 .The sulfenic acid intermediate of 
N-terminal Cys forms an intramolecular disulfide bond with the C-terminal end of the same 
protein as against the Prx1-4 proteins where the disulfide bond formation occurs between two 
Prx proteins forming the dimer. Trx reduces the disulfide bond. [4]. 
 

Still another mechanism is proposed for the 1-Cys containing isoform, Prx6 

(Figure 6). Prx6 is also present as a monomer, and hence cannot form inter or intra 

molecular disulfide bonds. Although the exact electron donor to oxidized Prx6 is not yet 

identified some reports have shown GSH as the donor electron [7]. Protein overlay 

assays have identified a 20-kDa Prx6 binding protein as Cyclophilin A [8]. 

 

Figure 6. Reaction mechanism of Prx 6. This enzyme contains only one conserved catalytic 
cysteine in the N-terminal region. Moreover this protein exists as a monomer, and hence the 
above mechanism has been proposed for this enzyme. The Cys-SOH reaction intermediate could 
form interprotein disulfide linkages with other proteins [4]. 
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Distribution of Prx in tissues 

 Like most proteins, peroxiredoxins can also be detected using immunoblot 

analysis. Isoform-specific antibodies can be used for detecting all the different members 

of the family. Table 1, shows distribution of the Prx isoforms in various rat tissues. This 

enzyme seems to be present in almost all tissues at high levels, indicating that this 

enzyme also plays an important role as an antioxidant [5]. The only isoform not detected 

is the Prx4, and this is because Prx4 is a secreted protein and found in plasma. 

 

 

 

Peroxiredo

 Unlike other members of the family Prx4

the plasma, even though it shares almost 70%

has an N-terminal signal sequence, which is cl

secreted into the plasma. It has been seen tha

sequence, Prx4 can bind to the membrane thro

cleaved form cannot [9]. Some speculate that 
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within the enzyme mask binding site of heparan sulfate. Prx4 serves as an antioxidant 

enzyme in the blood, as is seen from Figure 6. Although the secretable form of Prx4 is 

enzymatically active and the membrane-associated form is inactive, it is possible that 

the bound form could serve other functions [10]. 

 

 

 

 
 
 
 
 
 
 
 

Summary 
 

Peroxiredoxins are a relatively new family of antioxida

species. Some isoforms of Prx like mammalian Prx6 have a

additional phospholipase A2 activity [11]. The main function 

regulate the intracellular levels of hydrogen peroxide and the

H2O2 mediated cellular responses like apoptosis [12]. This re

an impact on cell proliferation. Likewise it has recently been

Prx1 can be phosphorylated by cell cycle dependant kinases

phosphorylation inactivates Prx1 and thereby results in accu

seems to be necessary for cell cycle progression [13]. More

isoforms are seen to be overexpressed during tumorigenesi

ubiquitous expressions, peroxiredoxins could play a more im
Figure 6. Reaction of Prx4
and its interconversion
between bound and secreted
forms. Once the redox
dependant formation of
intermolecular disulfide bond
takes place, Prx4 can no
longer anchor to the
membrane and is secreted into
the plasma [4]. 
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oxidative stress, however more studies need to be done to define the exact roles and 

reaction mechanisms of the Prx members 
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