77:222 Free Radicals in Biology and Medicine (4 Semester hours) Spring 2001 Course Outline

 Instructors:
 Dr. Larry W. Oberley
 B-180 ML
 (319)335-8015

 Dr. Garry R. Buettner
 68 EMRB
 (319)335-6749

 TA:
 Tongrong He
 58 EMRB
 58 EMRB

Lectures are held M,T,W,TH 9:30-10:20 in B-180 ML

This course is designed to give participants an understanding of the fundamental aspects of free radical and antioxidant chemistry, biochemistry, and biology. The goal is to provide the fundamental knowledge required by researchers who wish to pursue problems of human health that involve free radicals, related oxidants, antioxidants, and antioxidant enzymes.

The course will have two exams: March 5 and a final exam in May.

Participants will prepare five papers for the course. Papers I-IV are short papers; *i.e.*, no more than 10 pages, including title page and references. They will describe the fundamental free radical-related **chemistry and biochemistry** of the topic. The papers will be prepared on a word processor. They will be submitted in two stages. The preliminary version will be returned with comments and suggestions (no grade will be assigned). The author then can address these comments as appropriate for the final submission, which will be graded.

Paper I - Radicals and Reactive Oxygen Species

Preliminary version due 25. January 2001 9:30 sharp. Final version due 8. February 2001 9:30 sharp.

Possible topics are:

1. O₂•'/HO₂• in water
 2. HO•
 3. Peroxyl, ROO•
 4. e⁻_{aq}/H•
 5. alkoxyl, RO•
 6. H₂O₂

7. *NO 8. peroxynitrite 9. O₃ 10. CO₂* 11. O₂ 12. ¹O₂

13. GS[•], glutathiyl
14. Methyl/ethyl/pentyl radicals
15. O₂[•]/HO₂[•], nonprotic solvent
16. pentadienyl radical
17. N₃[•]
18. [•]NO₂
19. Sulfenic acids
20. LOOH

Paper II - Small-Molecule Antioxidants

Preliminary version due 12. February 2001 at 9:30 sharp. Final version due 22. February 2001 at 9:30 sharp.

Possible topics are:

1. Vit C	7. Trolox	13. GSH	19. Flavinoids
2. Vit E	8. EDTA/DETAPAC	14. BHA/BHT	20. Ergothionine
3. CoO	9. Desferal®	15. Bilirubin	21. Pyruvate
4. Urate	10. Lipoic acid	16. SOD mimics	22. Lactate
5. β-carotene/vit A	11. "E"-analogues	17. Zinc	23.
6. Nitroxides	12. "C"-analogues	18. Vit K	24.

Paper III - Enzymes and Proteins

Preliminary version due 26. February 2001 at 9:30 sharp. Final version due 8. March 2001 at 9:30 sharp.

Possible topics are:

1. CuZnSOD	11. Thioredoxin
2. MnSOD	12. Lipoxygenases
3. FeSOD	13. Myoglobin
 Catalase Phospholipase A₂ Glutathione peroxidase (I) PhGPx Transferrin/Lactoferrin Xanthine oxidase Xanthine dehydrogenase 	14. Ferritin 15. P-450's 16. NOS I 17. NOS II 18. NOS III 19. NOS IV 20. Hepatoglobin

- 21. Melanin
- 22. Oxidative proteases
- 23. Oxidative DNA repair enzymes
- 24. Hemeoxygenase
- 25. Heat Shock Proteins
- 26. HRP
- 27. MPO
- 28. LPO
- 29. Peroxiredoxin (Prx I, II III,IV)
- 30. NADPH Oxidase
- 31. Thioredoxin reductase
- 32. GSSG reductase

Paper IV - Xenobiotics

Preliminary version due 22. March 2001 at 9:30 Final version due 2. April 2001 at 9:30

Possible topics are:

Paraquat, Adriamycin, Miso, Bleomycin, CCl₄ metabolism, acetaminephine, alloxan and diabetes, hydrazines, ether lipids, streptozotocin, chlorpromazine, cigarette smoke, SO₂, air pollutants, Nipride, asbestos, silica, MPTP, nitroglycerin, PBN, "UV-light" or a topic of <u>your</u> choice.

Paper V - Disease States and Free Radicals

Due:May 3, 2001 at 9:30 a.m. sharpLength:15-25 pagesTopic Selection Date:No later than 19. March 1997Outline Deadline:April 12, 2001 (Two copies of a detailed outline are to be handed in)

Scientists have increasingly claimed that free radicals are the cause of various diseases and pathologies. However, 90% of these claims are still controversial because not enough evidence is available. We would like you to examine the role of active oxygen species or free radicals. As an alternative, one of the following diseases or pathologies (or any other of your choice) may be chosen upon consent of the instructors:

Cancer (cause, cell biology and treatment), aging, ischemia-reperfusion injury, inflammation, diabetes, muscular dystrophy, cataracts, radiation-injury, chemical-injury (pick a chemical), sickle-cell anemia, malaria, chronic granulamatous disease, thalessemias, lipoproteins and atherosclerosis, porphyrias, oxygen toxicity, DNA damage (mutations, aberrations, etc.), Down's syndrome (Trisomy 21), silicosis, alcoholism, ALS/Lou Gehrig's disease, or any other topic of your choice.

You should review the literature, suggest new experiments and if possible propose a mechanism of injury. Take a stand on whether free radicals are involved or not involved. Do not hesitate to argue against free radicals as a mechanism of action. If possible, suggest a treatment for this pathology. At least one page should be devoted to a proposal of new experiments to test a basic hypothesis on the understanding of this health problem.

The final paper should be from 15 to 25 pages in length, including title page and references.

Paper Format:

All papers should be double spaced with 1" (or 2.5 cm) margins. The font size used in all papers should be equal in size to that of 12 pt Times New Roman, such as used in this document. They should have a title page, *e.g.*,

P.T. Mann

Free Radicals

1

Free Radicals are Great

by

PAR T. MANN

101 The Fieldhouse Department of Free Thinking The University of Iowa Iowa City, IA 52242-1234

Tel: 319/335-5555 Fax: 319/335-0000 Email: par-mann@uiowa.edu

For 77:222, Spring 2001

1. April 2001

At the bottom of the title page put an alphabetical list of any abbreviations used. The top of each page should have a header with name, a short title, then page number on the right.

Then, on page 2 an outline with page numbers followed on the same page by the

Abstract: 25-100 words.

Introduction: one or two paragraphs (Start at the top of page 3.)

Main Text References (Start a new page.)

In your paper all "facts" should be referenced as to source. If figures from publications are copied, the source is to be given. Each paper must have primary sources when appropriate.

The References are to be consecutively numbered in the text and noted as [1] etc. Do <u>not</u> use superscript.

The Reference Formats* are:

Journal:

1. Oberley LW, Buettner GR. (1979) Role of superoxide dismutase in cancer: A review. *Cancer Res.* **39**:1141-1149.

Book:

2. Oberley LW, ed. (1982) Superoxide Dismutase. Vol. 2 Boca Raton, FL: CRC Press.

Chapter in Edited Book:

3. Buettner GR. (1982) The spin trapping of superoxide and hydroxyl radicals. In: Oberley LW, ed. Superoxide Dismutase. Vol. 2. Boca Raton, FL: CRC Press; pp 63-81.

* Note that complete titles are to be given. Single space within a citation, double space between citations. Note also, the "hanging" format.

77:222 Free Radicals in Biology and Medicine

Miscellaneous

"Truth in Lending" -- Students borrowing extra time to complete their papers will be charged interest at the rate of 1% of their grade per hour. Interest free extensions will be given only in cases of documented emergency. This request must be presented in writing and, of course, be well documented.

"Truth in Learning" -- Portions of The University of Iowa Student Handbook dealing with dishonesty in academic work are incorporated by reference into this course description. Violators will suffer. Plagiarism is the biggest temptation. Plagiarism is the practice of copying from a book or other publication and not acknowledging that the words or figures used are someone else's. Possible consequences for plagiarism are: failing grade for paper, expulsion from the course, or expulsion from the University.

"Administrative Procedures Act" -- Portions of The University of Iowa Catalogue dealing with adding and dropping courses are incorporated by reference into this course description.

"Surgeon General's Warning" -- Smoking is hazardous to your health and to the health of those around you. Smoking is prohibited in all university buildings. The use of other forms of tobacco is hazardous to your health as well as aesthetically repugnant. It is prohibited in our classroom and offices.

"Communications Decency Act" -- Out of respect for your colleagues and to the class, please turn off all pagers and mobile phones during class. Emergency personnel and expectant parents are exempt.

This page is adapted from:

http://cornell-iowa.edu/politics/red-tape.html

Physical QuantityName of unitUnit symbollength $Basic units$ lengthmetermmasskilogramkgtimesecondselectric currentampereAtemperaturekelvinKluminous intensitycandelacdamount of substancemolemolperived unitsfrequencymeterareasquare meterm ³ frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m ³ speedmeter per secondm/s²angular speedradian per second squaredm/s²forcenewtonN (kg•m/s²)kinematic viscositysq meter per secondm²/s²dynamic viscositysq meter per secondm²/sfuencekilojoule per sq meterN (kg•m/s²)kinematic viscositysq meter per secondm²/syoutic viscositysq meter per secondm²/sfuencekilojoule per sq meterN/s/s)fluence ratewattW (J/s)fluence freekilojoule per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric cesistanceohm Ω (V/A)electric resistanceohm Ω (V/A)electric resistancehemryH (Wb/A)inductancehemryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic fluct distrengthampere per meter<	I. NAMES AND SYMBOLS OF SI UNITS		
ImageBasic unitslengthmetermmasskilogramkgtimesecondselectric currentampereAtemperaturekelvinKluminous intensitycandelacdamount of substancemolemolareasquare meter m^2 volumecubic meterm³frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per second squaredm/s²angular speedradian per second squaredm/s²angular scelerationradian per second squaredm/s²forcenewtonN (kg·m/s²)pressurepascalPa (N/m²)kinematic viscositynewton-second per sq meterN·s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluence ratewatt per sq meterW/m²electric field strengthvolt per meterV/melectric field strengthvolt per meterV/melectric field strengthkelogram per culot per sqM/s/s)inducancehenryH (Wb/A)magnetic filux densityteslaT (Wb/m²)magnetic filux densityteslaT (Wb/m²)	Physical Quantity	Name of unit	Unit symbol
lengthmetermmassKillogramkgtimesecondselectric currentampereAtemperaturekelvinKluminous intensitycandelacdamount of substancemolemolareasquare meterm²volumecubic meterm³frequencyhertzHz (s¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per second squaredms²²angular accelerationmeter per second squaredms²²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositynewton-second per sq meterN•s/m²dynamic viscositynewton-second per sq meterN/s²fluencekilojoule per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric field strengthvolt per meterV/melectric fluxweberWb (v•s)inductanceherryH (Wb/A)magnetic flux densityteslaT (Wb/m²)		<u>Basic units</u>	
masskilogramkgtime $3 \sec cond$ s electric currentampere A temperaturekelvin K luminous intensitycandela cd arount of substancemolemol $Berkved units$ mol areasquare meter m^2 volumecubic meter m^3 frequencyhertz Hz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per second m/s^2 angular speedradian per second squared m/s^2 angular accelerationradian per second squared m^2/s^2 forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositynewton-second per sq meter M^2/s fluencekilojoule per sq meter $W/m²$ electric chargecoulomb C (A•s)voltage, potential difference, electric field strengthvolt per meter V/m electric field strengthvolt per meter $W/m²$ electric field strengthkeler Wb/v magnetic filux densitytesla T (Wb/m²)magnetic filux densitytesla T (Wb/m²)magnetic filed strengthampere A/m	length	meter	m
timesecondselectric currentampereAtemperaturekelvinKluminous intensitycandelacdamount of substancemolemolareaSquare meterm²volumecubic meterm³frequencyhertzHz (s³)densitykilogram per cubic meterkg/m³speedmeter per secondm/s²angular speedradian per secondm/s²angular accelerationmeter per second squaredm/s²frcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²fluencekilojoule per sq meterW/s²fluencekilojoule per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistanceohmΩ (V/A)electric field strengthvolt per meterV/melectric field strengthvolt per meterW/m²inductancehenryH (Wb/A)magnetic fluxweberwb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)	mass	kilogram	kg
electric currentampereAtemperaturekelvinKluminous intensitycandelacdamount of substancemolemolareasquare meterm²volumecubic meterm³frequencyhertzHz (s²)densitykilogram per cubic meterkg/m³speedmeter per secondm/s²angular speedradian per second squaredm/s²angular speednewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN*s/m²power, radiant fluxwattW (J/s)fluencekilojoule per sq meterN/s²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevoltV (W/A)electric resistanceohm Ω (V/A)electric resistancehenryH (Wb/A)magnetic fluxweberWb (v•s)inducancefaradF (A•s/V)magnetic flux densityteslaT (Wb/m²)magnetic flux densityteslaT (Wb/m²)magnetic flux densityteslaT (Wb/m²)	time	second	S
temperaturekelvinKluminous intensitycandelacdamount of substancemolemol $Berived units$ molareasquare meter m^2 volumecubic meter m^3 frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per second squaredm/s²angular speedradian per second squaredm/s²angular scelerationmeter per second squaredm/s²angular cacelerationradian per second squaredm/s²pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN (kg•m/s²)fluencekilojoule per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistanceohm Ω (V/A)electric field strengthvolt per meterV/melectric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic flux densityteslaT (Wb/m²)	electric current	ampere	A
luminous intensitycandelacdamount of substancemolemol $Derived units$ molareasquare meterm²volumecubic meterm³frequencyhertzHz (s⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squaredm/s²angular accelerationradian per second squaredm/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterNs/m²fluence ratewatt per sq meterKJ/m²fluence ratewatt per sq meterKJ/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevolt per meterV/melectric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic flux densityteslaT (Wb/m²)	temperature	kelvin	К
amount of substancemolemolareaSquare meter m^2 volumecubic meter m^3 frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squaredm/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterW/m²electric field strengthvolt per meterV/m²electric field strengthvolt per meterV/melectric fuct at the secondfaradF (A•s/V)magnetic fluxweberWb (V-s)inductancefaradF (A•s/V)magnetic fluxweberWb (V-s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	luminous intensity	candela	cd
Derived unitsareasquare meter m^2 volumecubic meter m^3 frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondmd/sangular speedradian per second squaredm/s²angular accelerationmeter per second squaredm/s²angular accelerationradian per second squaredm/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterKJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistanceohm Ω (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic flux densityteslaT (Wb/m²)	amount of substance	mole	mol
areasquare meter m^2 volumecubic meter m^3 frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squaredm/s²angular accelerationradian per second squaredrad/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevolt per meterV/melectric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic flux densityampere per meterA/m		Derived units	
volumecubic meter m^3 frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squaredm/s²angular accelerationradian per second squaredrad/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterKJ/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevolt per meterV/melectric resistanceohm Ω (V/A)electric fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic flux densityampere per meterA/m	area	square meter	m ²
frequencyhertzHz (s ⁻¹)densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squaredm/s²angular accelerationradian per second squaredrad/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancefaradF (A•s/V)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA	volume	cubic meter	m ³
densitykilogram per cubic meterkg/m³speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squaredm/s²angular accelerationradian per second squaredrad/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²electric chargecoulombC (A•s)voltage, potential difference, electric field strengthvolt per meterV/melectric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic flux densityampere per meterA	frequency	hertz	Hz (s ⁻¹)
speedmeter per secondm/sangular speedradian per secondrad/saccelerationmeter per second squared m/s^2 angular accelerationradian per second squared rad/s^2 forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per second m^2/s dynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevoltV (W/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (v•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	density	kilogram per cubic meter	kg/m ³
angular speedradian per secondrad/saccelerationmeter per second squared m/s^2 angular accelerationradian per second squared rad/s^2 forcenewton $N (kg \cdot m/s^2)$ pressurepascal $Pa (N/m^2)$ kinematic viscositysq meter per second m^2/s dynamic viscositynewton-second per sq meter $N \cdot s/m^2$ work energy, quantity of heatjoule $J (N \cdot m)$ power, radiant fluxwatt $W (J/s)$ fluencekilojoule per sq meter kJ/m^2 fluence ratewatt per sq meter W/m^2 electric chargecoulomb $C (A \cdot s)$ voltage, potential difference,volt per meter V/m electric resistanceohm $\Omega (V/A)$ electric capacitancefarad $F (A \cdot s/V)$ magnetic fluxweberWb (V \cdot s)inductancehenryH (Wb/A)magnetic field strengthampere per meter A/m	speed	meter per second	m/s
accelerationmeter per second squaredm/s²angular accelerationradian per second squaredrad/s²forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	angular speed	radian per second	rad/s
angular accelerationradian per second squared rad/s^2 forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistanceohm Ω (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meterA/mmagnetic field strengthampere per meterA/m	acceleration	meter per second squared	m/s ²
forcenewtonN (kg•m/s²)pressurepascalPa (N/m²)kinematic viscositysq meter per second $m²/s$ dynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference,voltV (W/A)electric resistanceohm Ω (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meterA/mmagnetic field strengthampere per meterA/m	angular acceleration	radian per second squared	rad/s ²
pressurepascalPa (N/m²)kinematic viscositysq meter per secondm²/sdynamic viscositynewton-second per sq meterN•s/m²work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevolt per meterV/melectric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	force	newton	N (kg \bullet m/s ²)
kinematic viscositysq meter per second m^2/s dynamic viscositynewton-second per sq meter $N \cdot s/m^2$ work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric resistancevolt per meterV/melectric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	pressure	pascal	Pa (N/m ²)
dynamic viscositynewton-second per sq meter $N \cdot s/m^2$ work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric field strengthvolt per meterV/melectric resistanceohm Ω (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meterA/m	kinematic viscosity	sg meter per second	m²/s
work energy, quantity of heatjouleJ (N•m)power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric field strengthvolt per meterV/melectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meterA/m	dynamic viscosity	newton-second per sq meter	N∙s/m ²
power, radiant fluxwattW (J/s)fluencekilojoule per sq meterkJ/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric field strengthvolt per meterelectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meter	work energy, guantity of heat	joule	J (N∙m)
Fluencekilojoule per sq meterk.J/m²fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electric field strengthvolt per meterV/melectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meter	power, radiant flux	watt	W (J/s)
fluence ratewatt per sq meterW/m²electric chargecoulombC (A•s)voltage, potential difference, electromotive forcevoltV (W/A)electric field strengthvolt per meterV/melectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic field strengthampere per meterA/m	fluence	kilojoule per sa meter	kJ/m^2
electric chargecoulombC (A•s)voltage, potential difference, electromotive forcevoltV (W/A)electromotive forceVelectric field strengthvolt per meterV/melectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	fluence rate	watt per sg meter	W/m ²
voltage, potential difference, electromotive forcevoltV (W/A)electromotive forcevolt per meterV/melectric field strengthvolt per meterV/melectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	electric charge	coulomb	C (A•s)
electromotive forceV/melectric field strengthvolt per meterV/melectric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	voltage, potential difference.	volt	V (W/A)
electric field strengthvolt per meterV/melectric resistanceohm Ω (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	electromotive force		
electric resistanceohmΩ (V/A)electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/m	electric field strength	volt per meter	V/m
electric capacitancefaradF (A•s/V)magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/mmagnetomotive forceamporeA	electric resistance	ohm	$\Omega (V/A)$
magnetic fluxweberWb (V•s)inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/mmagnetomotive forceamporeA	electric capacitance	farad	F (A•s/V)
inductancehenryH (Wb/A)magnetic flux densityteslaT (Wb/m²)magnetic field strengthampere per meterA/mmagnetomotive forceamporeA	magnetic flux	weber	Wb (V•s)
magnetic flux density tesla T (Wb/m²) magnetic field strength ampere per meter A/m magnetomotive force A	inductance	henry	H(Wb/A)
magnetic field strength ampere per meter A/m	magnetic flux density	tesla	$T (Wb/m^2)$
magnetomotive force amore A	magnetic field strength	ampere per meter	A/m
	magnetomotive force	ampere	A
luminous flux lumen lm (cd•sr)	luminous flux	lumen	Im (cd•sr)
luminance candela per sg meter cd/m ²	luminance	candela per so meter	cd/m^2
illuminance lux lx (lm/m ²)	illuminance	lux	$Ix (Im/m^2)$
wave number reciprocal meter m ⁻¹	wave number	reciprocal meter	m ⁻¹
entropy ioule per kelvin J/K	entropy	ioule per kelvin	J/K
specific heat ioule per kilogram kelvin J (kg•K)	specific heat	joule per kilogram kelvin	J (kα∙K)
thermal conductivity watt per m kelvin W/(m•K)	thermal conductivity	watt per m kelvin	W/(m•K)
radiant intensity watt per steradian W/sr	radiant intensity	watt per steradian	W/sr
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	activity (of a radioactive	becquerel	Ba (s ⁻¹)
source)	source)		
absorbed dose of ionizing grav Gv (J/kg)	absorbed dose of ionizing	grav	Gy (J/ka)
radiation	radiation	C 'C	- ,
Supplementary units		Supplementary units	
plane angle* radian rad	plane angle*	radian	rad
solid angle steradian sr	solid angle	steradian	sr

*Use of degrees, minutes, seconds of arc, or revolutions ® is permitted with SI

II. CONVERSION FACTORS

To convert from	to	Multiply by
acre	meter ²	4.406×10^3
angstrom	meter	1 x 10 ⁻¹⁰
atmosphere	Pa (newton/meter ²)	1.013 x 10 ⁵
calorie (thermochemical)	joule	4.184
centipoise	newton second/m ²	1.0 x 10 ⁻³
curie	disintegration/second	3.7 x 10 ¹⁰
day (mean solar)	second (mean solar)	8.64 x 10 ⁴
degree (plane angle)	radian	1.745 x 10 ⁻²
dyne	newton	1 x 10⁻⁵
electron volt	joule	1.602 x 10 ⁻¹⁹
erg	joule	1.0 x 10 ⁻⁷
erg/cm²s	watt/m ²	1.0 x 10 ⁻³
fahrenheit (temperature)	kelvin	$T_{\rm k} = (5/9) (T_{\rm F} + 459.67)$
faraday	coulomb	9.649 x 10 ⁴
foot	meter	3.048 x 10 ⁻¹
foot-candle	lumen/meter	1.076 x 10 ¹
gallon (U.K. liquid)	meter ³	4.546 x 10 ⁻³
gallon (U.S. liquid)	meter ³	3.785 x 10 ⁻³
gauss	tesla	1.0 x 10 ⁻⁴
inch	meter	2.54 x 10 ⁻²
kayser	reciprocal meter	1.0 x 10 ²
kilocalorie (thermochemical)	joule	4.184 x 10 ³
lux	lumen/meter ²	1.00
millibar	Pa (newton/meter ²)	1.0 x 10 ²
millimeter of mercury (0°C)	Pa (newton/meter ²)	1.333 x 10 ²
minute (plane angle)	radian	2.909 x 10 ⁻⁴
pint (U.S. liquid)	meter ³	4.732 x 10 ⁻⁴
poise	newton second/meter ²	0.10
psi	Pa (newton/m ²)	6.894 x 10 ³
rad (radiation dose absorbed)	Gy (joule/kilogram)	1.0 x 10 ⁻²
roentgen	coulomb/kilogram	2.5798 x 10 ⁻⁴
second (plane angle)	radian	4.848 x 10 ⁻⁶
torr (0°C)	Pa (newton/m ²)	1.333 x 10 ²
watt/cm ²	watt/m ²	1.0 x 10 ⁴
yard	meter	9.144 x 10 ⁻¹

Alphabetical listing

	UEINTLY USED STINIDU		
Symbol or abbreviation	Upper case (uc) or lower case (lc)	Greek (gr), italicized (ital), roman (rom), or script (sc)	Meaning and/or special instructions
C	lc	rom	centi, as in 10 cm
ca		ital	circa, use period
Chl Chl a etc		rom	chlorophyll, chlorophyll a, etc.
		ital	on this side of (isomerism)
Dr Mrs		n/a	most contracted abbreviations
diam		rom	diameter, use period
Fa Fas Fia Fias		rom	use periods
a		rom	gram
<u>9</u>		ital	gyromagnetic ratio in ESR
g g	lc	ital	bold face, meaning gravity, as in centrifugation at 10 0000 g (does not need times sign)
h	lc	rom	hour or hours
in vitro; in vivo; in situ etc.	n/a	ital	Latin is always italicized
J	uc	rom	joule or joules
Jpn., etc.	n/a	n/a	use periods
K; °C; °F	uc	rom	degrees kelvin (no degree sign); degrees celsius, degrees Fahrenheit (use degree sign)
k	Ic	ital	rate constant in units of s ⁻¹ and/or <i>M</i> ⁻¹ s ⁻¹
K, K _a	<i>K</i> , uc; a, lc	K,ital; a, rom	binding or equilibrium constant
kDa	k, lc; D, uc; a, lc	rom	kilodaltons
kТ	k, lc; T, uc	rom	k, Boltzmann's constant; T, temperature
	lc	SC	liter, as in 100 l or 100 ml
m	lc	rom	milli- and/or meter, as in 100 mm
М	uc	ital	refers to concentration, e.g. 0.5 <i>M</i> or 0.5 m <i>M</i>
mol wt	lc	rom	molecular weight, no periods
No.	N, uc; o, lc	rom	number, do not use #, follow 'o' with period
Р	uc	ital	probability, appears as an inequlity, e.g. (P > 0.05)
pН	p, Ic; H, uc	rom	negative log of H ⁺
р <i>К</i> , р <i>К_а</i>	p & a, lc; <i>K</i> , uc	p & a, rom; <i>K</i> , ital	negative log of K ; K_a
s; ns; ps; etc.	lc	rom	second, seconds; nanosecond; picosecond, etc.
trans-	lc	ital	across or over (isomerism)
μ	lc	gr	mu, or micro
USA, DNA, UK, etc.	uc	n/a	no periods with most acronyms
V	uc	rom	volt or volts
vol/vol, wt/vol, wt/wt, etc.	lc	rom	volume/volume; weight/volume; weight/weight, etc. Do not use v/v, w/v, w/w, etc.
W	uc	rom	watt or watts
x	n/a	n/a	a cross signifying multiplication, <i>not</i> raised period

III. FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

77:222 Free Radicals in Biology and Medicine Tentative Outline

(Space provided below need not correlate with time devoted to the discussion of the topic.)

Ι.	Introduction
	A. Current Status of Radicals in Health
	Issues
	B. What is a radical
	C. Free Radicals and Your Life
II. 	Historical Aspects
	Electronic Structure and Bonding
IV.	Active Oxygen
	A. Species, O_2 , $O_2^{\bullet-}$, HO_2^{\bullet} , O_2 , H_2O_2 ,
	HO
	B. Chemistry
V.	Radical Reactions
VI.	Free Radical Kinetics
	A. FIRST-Order Reaction
	B. Second-order Reaction
	D Chain-reactions
VII	Padiation Chemistry
VII.	
	A. TOUS B. Species: $a^ \square^0$ \square^0 \square^0 \square^0 \square^0
	B. Species: e_{aq} , H , HO , H_2O_2 , H_2 , O_2
	C. THERS: CU_2^{-1} , $N_2U_2^{-1}$
	D. Pulse Radiolysis/Flash Photolysis
VIII.	A Chamistry
	R Measurement
	C. Effects
IX.	Antioxidants
	A. Preventative
	B. Chain-breaking
	C. Small molecule
	1. Vit C and E
	2. CoQ
	3. Urate
	4. Other
	D. Enzymes E. Cholatos
x	Iron and Free Radical Chemistry
Λ.	A. Reactions
	B. Chelates
	C. Protein
	1. Transferrin
	2. Ferritin
	3. Hemes
XI.	The Pecking Order
	A. Thermodynamics
XII.	
	A. AS a target
	C Products
XIII	Protein Oxidation
	Dhoto reactions

XI Photo reactions

- A. Photochemistry
- B. Photosensitization
- C. ¹O₂

XV. **Detection of Radicals**

- A. TBARS
- B. Fluorescence
- C. Cyt C /NBT
- D. DNA Products
- E. Strategies
- 1. SOD, CAT, chelates
- **EPR Detection of Radicals** XVI.
 - A. Instrumentation B. Direct Detection
- EPR, Transition Metals XVII.
 - A. Fe
 - B. Cu
 - C. Mn
- XVIII. EPR, Spin Trapping
 - A. Chemistry
 - B. Biology
- XIX. Xanthine Oxidase

A.
$$O_2^{\bullet}/H_2O_2$$

- **Heme Peroxidases** XX. A. HRP
 - B. Others
- NADPH Oxidase XXI.
- XXII. Nitric Oxide/NOS
 - A. NO
 - B. ONOO-
 - C. Nitric oxide synthases
- XXIII. Organelle Production of ROS
- XXIV. Cellular Production of ROS
- XXV. Superoxide Dismutase
 - A. Function
 - B. Physical Biochemistry
 - 1. CuZn-SOD
 - 2. Mn-SOD
 - 3. Fe-SOD
- XXVI. Assay for SOD
- XXVII. Catalase

XXVIII. Glutathione/Glutathione Enzymes

- A. GSH
 - B. GPx 4 types
 - C. GST
- D. GR
- XXIX. Thioredoxin Systems
- XXX. Other Antioxidant Enzymes
- XXXI. Molecular Biology of AEs
- XXXII. Cytokines
- XXXIII. Free Radicals and Cellular Differentiation
- XXXIV. Free Radicals and Cancer
- XXXV. Free Radicals in Other Diseases, e.g.
 - A. Inflammation
 - B. Trisomy 21
 - C. Aging
 - D. Ischemia/Reperfusion
 - E. Diabetes
 - F. ALS
 - G. Atherosclerosis

XXXVI. Redox State of the Cell