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The connection between auditory fields of the temporal lobe and
prefrontal cortex has been well characterized in nonhuman pri-
mates. Little is known of temporofrontal connectivity in humans,
however, due largely to the fact that invasive experimental ap-
proaches used so successfully to trace anatomical pathways in lab-
oratory animals cannot be used in humans. Instead, we used a
functional tract-tracing method in 12 neurosurgical patients with
multicontact electrode arrays chronically implanted over the left
(n= 7) or right (n= 5) perisylvian temporal auditory cortex (area
PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior
frontal gyrus (IFG) for diagnosis and treatment of medically intract-
able epilepsy. Area PLST was identified by the distribution of
average auditory-evoked potentials obtained in response to simple
and complex sounds. The same sounds evoked little if there is any
activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-
balanced) applied between contacts within physiologically iden-
tified PLST resulted in polyphasic evoked potentials clustered in
VLPFC, with greatest activation being in pars triangularis of the IFG.
The average peak latency of the earliest negative deflection of the
evoked potential on VLPFC was 13.48 ms (range: 9.0–18.5 ms), pro-
viding evidence for a rapidly conducting pathway between area
PLST and VLPFC.

Keywords: auditory evoked potential, electrical stimulation, functional
connectivity

Introduction

The current working model of auditory processing at the fore-
brain level in humans is based, in large part, on the results of
modern anatomical and physiological studies in the monkey
(Kaas and Hackett 2005; Hackett 2011). The model envisions
multiple auditory cortical fields of the superior temporal
gyrus (STG) reciprocally interconnected and arranged in three
levels—core, belt, and parabelt—each having its unique con-
nections with the medial geniculate body and related auditory
thalamic nuclei. An extension of this model includes anatomi-
cally and functionally segregated pathways arising from belt
and parabelt areas and reaching auditory-related ventrolateral
(VLPFC) and dorsolateral (DLPFC) prefrontal cortices (Hackett
et al. 1999; Romanski et al. 1999a, 1999b). Acoustically acti-
vated areas of prefrontal cortex are referred to as being “audi-
tory related”, as they receive auditory input indirectly by way
of “classic” auditory cortex of the temporal lobe and perhaps
as well through thalamic, midbrain, limbic, and cerebellar
structures which themselves receive sensory input (Fuster
2008). Although many questions of the homology of auditory
and auditory-related cortical fields between human and non-
human primates remain unsettled (Petrides and Pandya 1999,

2002; Hackett et al. 2001; Hackett 2003, 2007, 2008; Sweet
et al. 2005; Fullerton and Pandya 2007), the model derived
from monkey studies and briefly outlined above serves as an
attractive starting point in understanding the structural and
functional organizations of auditory cortical processing in the
human (Rauschecker and Scott 2009; Kelly et al. 2010). In this
paper, we investigate the functional connectivity between
auditory cortex on the posterolateral surface of the STG and
VLPFC.

Evidence from intracranial electrophysiological (Celesia,
1976; Creutzfeldt and Ojemann 1989; Creutzfeldt et al. 1989a,
1989b; Howard et al. 2000; Crone et al. 2001; Brugge et al.
2003; Edwards et al. 2005, 2009; Bidet-Caulet et al. 2007;
Reale et al. 2007; Besle et al. 2008; Steinschneider et al. 2011)
and functional imaging (Binder et al. 2000; Hall et al. 2002;
Scott and Johnsrude 2003; Hart et al. 2004; Uppenkamp et al.
2006; Voisin et al. 2006) studies in humans have shown that
speech and nonspeech sounds activate much of the STG, in-
cluding the area we refer to as the posterolateral superior tem-
poral (PLST) auditory field (Howard et al. 2000).
Cytoarchitectonically, area PLST occupies portions of area 22
of Brodmann (1909), of TA of von Economo (1929), and of
Tpt, PaAlt, and TS3 of Galaburda and Sanides (1980). Multiple
areas on the superior temporal plane have been identified his-
tochemically along with an area on the lateral surface of STG
that appears to overlap PLST (Rivier and Clarke, 1997;
Wallace et al. 2002; Chiry et al. 2003). Response properties of
PLST distinguish it from those of putative auditory core and
adjacent belt cortex on Heschl’s gyrus (HG) (Howard et al.
2000) with which it makes functional connections (Brugge
et al. 2003, 2005). Whether PLST in humans should be con-
sidered the homolog of belt or parabelt cortex in monkey is
not clear (Hackett et al. 2001; Hackett 2003, 2007; Sweet et al.
2005; Fullerton and Pandya 2007).

Prefrontal cortex reaches its highest level of development
in humans where it occupies that area of the frontal lobe
immediately rostral to motor and premotor cortex. It is non-
uniform in its cytoarchitecture with multiple fields identified
on the lateral surface alone (Petrides and Pandya 1999, 2002).
Early direct intracranial recording revealed relatively wide-
spread and overlapping auditory, visual, and somatosensory
input to prefrontal cortex (Walter 1964). Subsequent anatom-
ical, physiological, and imaging studies in human and non-
human primates provide evidence that prefrontal cortex is
organized into functional domains that integrate multiple
sensory inputs and engage in a number of complex sensori-
motor and cognitive processes (Toga and Maziotta, 2000;
Stuss and Knight 2002; Romanski 2004; Fuster 2008).
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In monkey, DLPFC has been shown to receive auditory
cortico-cortical input via a dorsal pathway originating in
caudal belt cortex (Pandya and Yeterian 1996; Romanski et al.
1999a, 1999b) although VLPFC appears to receive afferents
over this route as well (Petrides and Pandya 2009). Neurons
in the acoustic domain of DLPFC are typically, though not ex-
clusively, activated most strongly by sounds arising from par-
ticular locations in space (Azuma and Suzuki 1984; Vaadia
et al. 1986; Vaadia, 1989), a characteristic that is observed in
posterior belt cortical neurons as well (Recanzone 2000). Ac-
cordingly, it has been postulated that this temporofrontal
circuit is a pathway that conveys primarily spatial information
about the sound source. Neurons within a highly restricted
region of VLPFC have been shown to respond robustly to a
wide range of acoustic signals, including monkey vocalization
and human speech (Romanski and Goldman-Rakic 2002;
Cohen et al. 2004; Romanski et al. 2005; Russ et al. 2008;
Romanski and Averbeck 2009). This acoustic domain of
VLPFC in monkey is within the projection field of the antero-
lateral belt area on the STG (Romanski et al. 1999a, 1999b),
which itself contains neurons that are most sensitive to these
same complex sounds (Rauschecker et al. 1995; Rauschecker,
1997, 1998; Tian et al. 2001; Rauschecker and Tian 2004).
VLPFC is interpreted to be part of a functional stream
engaged mainly in identifying complex acoustic signals or
“acoustic objects”. Information about the “where” and “what”
of complex sound is thus postulated to reach prefrontal cortex
over dual pathways (Kaas and Hackett, 1999; Rauschecker
and Tian, 2000; Scott 2005; Hackett, 2011). While such an
arrangement is consistent with indirect findings from func-
tional imaging studies in humans as well (Arnott et al. 2004),
there is little direct neurophysiological evidence of these pur-
ported functional connections.

Modern neuronal tracer and microelectrode mapping
methodologies, which have been so effectively exploited to
reveal robust, topographically organized connections between
the STG and VLPFC in the nonhuman primate (Petrides and
Pandya 1988, 2009; Pandya and Yeterian 1996; Hackett et al.
1999; Romanski et al. 1999a, 1999b) cannot be effectively
used in humans. Anatomical magnetic resonance imaging
(MRI), diffusion tensor imaging (DTI), and resting state func-
tional connectivity (RSFC) analyses have shown promise in
tracing the trajectory of some of the major white matter tracts
connecting temporal and frontal lobes (Kier et al. 2004a,
2004b; Catani et al. 2005; Parker et al. 2005; Powell et al.
2006; Glasser and Rilling, 2008; Rilling et al. 2008; Catani
2009; Kelly et al. 2010). Indeed, until the advent of DTI and
RSFC, no anatomical tracing of temporofrontal connections in
the human brain was carried out save by blunt dissection in
autopsy specimens or by microscopic examination of serial
tissue sections stained for myelinated axons (e.g. Dejerine
1895; Rosett, 1933). Although DTI provides information on
the trajectories of associational white matter tracts, they do
little to illuminate the origin, terminal distribution, or trans-
mission properties of these pathways, and RSFC may not
exhibit a one-to-one relationship with anatomical connectivity.

We have adopted an alternative method of mapping neural
pathways in human cerebral cortex, in neurosurgical patients.
The basic approach involves electrical stimulation of one cor-
tical site while recording neural activity evoked by that stimu-
lus from more distant cortical loci (see also Wilson et al. 1990;
Liegeois-Chauvel et al. 1991; Matsumoto et al. 2004, 2007).

Although this approach provides no direct information on the
anatomical trajectories of neural pathways, it does provide
information, in the living human brain, on the functional con-
nectivity between the locus of electrical stimulation and the
area(s) from which electrically evoked responses are re-
corded. Using this approach, we have described the func-
tional connections between human core cortex on HG and
area PLST (Howard et al. 2000; Brugge et al. 2003, 2005). We
also identified functional connectivity within VLPFC (Green-
lee et al. 2007) and between VLPFC and orofacial motor
cortex (Greenlee et al. 2004). Here we extend these findings,
presenting direct electrophysiological evidence for a rapidly
conducting pathway that links auditory area PLST with VLPFC
in humans.

Materials and Methods
Studies reported here involved recording from, and electrically stimu-
lating, cerebral cortex directly in, 12 adult neurosurgery patients un-
dergoing treatment for medically intractable epilepsy. Results were
obtained from multicontact subdural recording arrays placed over the
lateral frontal and perisylvian cortices of the left (n = 7) or right (n =
5) cerebral hemisphere. Age, gender, handedness, and results of
sodium amytal (Wada) testing are shown in Table 1. Pure-tone audio-
grams and speech discrimination scores obtained preoperatively all
fell within the normal range. Many of the details of electrode design
and implantation as well as electrophysiological recording and electri-
cal stimulation methods have been reported previously (Howard et al.
1996, 2000; Brugge et al. 2003; Greenlee et al. 2004, 2007; Reddy
et al. 2010). The experiments were undertaken in accordance with the
Declaration of Helsinki. The University of Iowa Institutional Review
Committee approved all experimental protocols, and written informed
consent was obtained from each subject.

Two multicontact recording grid arrays (Radionics, Burlington,
MA, USA) were placed directly on the pial surface in each of the
12 subjects. Clinical considerations dictated the dimensions and
placement locations of the arrays. Grid arrays consisted of 8 × 8 (n = 5),
6 × 10 (n = 4), 6 × 12 (n = 1), 5 × 12 (n = 1), or 5 × 8 (n = 1) contacts.
Each recording contact was 1.6 mm in diameter with a 5 mm (on
center) intercontact separation. One recording array was positioned
over the posterolateral aspect of the STG, typically extending onto the
perisylvian parietal cortex dorsally and the middle temporal gyrus
ventrally. Grids placed over the perisylvian region were most often
centered over cortex caudal to the intersection of the central sulcus
(CS) and lateral (Sylvian) fissure (LF). These left portions of the
middle and anterior STG were unstudied as was the most posterolat-
eral STG that fell beyond reach of most grid placements. The second
recording grid array was centered over the IFG, covering much of

Table 1
Age, gender (male/female), handedness (left, right, bilateral, undetermined) and Wada results
(left dominant/right dominant/bidominant/not performed) for each of the subjects in the study.

Subject Age Gender Hand Wada

R21 33 F R L
L37 50 M R L
L40 48 M R L
R42* 39 M R L
R43 32 F R L
R57* 48 M L L
L59 39 F R NP
L62 30 F U L
L64 53 F U R
L66 29 F R B
R74* 46 M R L
L93* 23 M R L

Handedness self-reported in nine subjects and determined using the Geschwind–Oldfield
Questionnaire in 1 (L93). Asterisks refer to those subjects whose evoked potential maps,
waveforms, and waveform latency measurements are shown in Figures 1–6.

2310 Superior Temporal Gyrus to Ventrolateral Prefrontal Cortex Connection • Garell et al.

 at U
niversity of Iow

a L
ibraries/Serials A

cquisitions on June 3, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


pars triangularis, with limited coverage of pars orbitalis, pars opercu-
laris, and/or other lateral precentral frontal cortices. The placement of
these two arrays allowed us to focus on the functional relationship
between previously identified temporal auditory field PLST and pars
triangularis of the IFG.

In addition to these two grid arrays, four-contact strip electrodes
with a 1-cm intercontact spacing were placed on the ventral surface of
the inferior temporal gyrus bilaterally. A modified depth electrode
(Howard et al. 1996) was also stereotactically implanted roughly par-
allel to the long axis of HG. Evidence for a functional connection
between HG and PLST has been presented previously (Howard et al.
2000; Brugge et al. 2003, 2005).

Intraoperative photographs, post-implantation CT scans, and pre-
and postimplantation MRIs were used together in localizing the grid
and depth electrode recording sites. A quasi-3D reconstruction was
performed on the brain of each patient based on preoperative thin,
contiguous MR images using Brainvox (Damasio and Frank 1992;
Frank et al. 1997).

Subjects were studied for periods up to 2 weeks while they were
undergoing clinical video and electroencephalographic monitoring.
Research recordings were usually begun 2 or 3 days after recovery
from the implantation surgery. During recording sessions, the subject

was usually sitting up awake in the hospital bed or on a nearby recli-
ner. Electrodes remained in place for periods ranging from 7 to 14
days (median: 10 days).

A wide range of acoustic stimuli, including click trains, tone and
noise bursts, and consonant vowel (CV) utterances, were presented
monaurally or binaurally through insert earphones (Etymotic Re-
search, Elk Grove Village, IL, USA). Earphones were built into an
earmold of the kind typically worn by hearing-aid users. Sound
stimuli were delivered at a suprathreshold level that was comfortable
for each patient (typically 50 dB above the detection threshold). In 10
of the 12 subjects studied, cortical activity was recorded simul-
taneously from 12 contacts on the surface grid array. Signals were am-
plified (Bak Electronics, Germantown, MD, USA), filtered (2–500 Hz),
and digitized (DataWave, Longmont, CO, USA). Another set of 12 con-
tacts was then chosen for simultaneous recording, and the operation
repeated until all contacts on the grid array were sampled and the
map completed. In two subjects, studied later in this series, signals
were recorded simultaneously from 64 sites on an 8 × 8 grid array,
amplified (Grass P15 Preamplifiers, Westbank Warwick, RI, USA), fil-
tered (1–1000 Hz), and digitized (Hewlett Packard VX-1, Palo Alto,
CA, USA). Sampling rate was 2, 4, 8, or 10 kHz. With both data acqui-
sition systems, data were stored for off-line analysis using software

Figure 1. (A) Lateral surface-rendered MR image showing locations of recording grids and response fields on STG and VLPFC of right cerebral hemisphere. (B) Response fields
on posterolateral STG to binaural CV (/ba/) stimulation identify area PLST. Bipolar electrical stimulation of sites within PLST are identified by lower case letters a–d. (C) Response
field on VLPF to the same /ba/ stimulus. (D–F) Response fields on VLPFC to electrical stimulation of three sites (a–b, a–c, d–e) on PLST. CS, central sulcus; LF, lateral fissure;
STS, superior temporal sulcus; AAR, anterior ascending ramus of the LF; AHR, anterior horizontal ramus of the LF; PT, pars triangularis. STG and PT identified by shading. Box
surrounds site(s) on VLPFC of maximal responsiveness to electrical stimulation of PLST. Asterisk identifies the evoked potential shown expanded in time in Figure 6.
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developed under Matlab (Mathworks, Natick, MA, USA). Averaged
auditory evoked potentials (AEPs) were computed from 30 to 100
stimulus trials. Negativity is plotted upward in all figures. In all but
two subjects, the data acquisition system used computed and saved
only the average waveform, discarding individual trials. Hence we did
not study evoked gamma-band activity, which may well have been
present along with evoked activity represented by the AEP (see
Steinschneider et al. 2011).

Once electrophysiological mapping to acoustic stimulation was
completed, we initiated electrical-stimulation tract-tracing experi-
ments. A single brief (0.2 ms) charge-balanced electrical pulse was
applied in bipolar fashion through a Grass SD9 (constant voltage)
or Grass SD12 (constant current) stimulator to adjacent cortical

sites within and around functionally identified area PLST while re-
cording from cortex beneath the surface grid on the frontal lobe
using the same recording methods described above. The local acti-
vation patterns created by this bipolar stimulus configuration can
be complex (see Brown et al. 1973; Ranck 1975; Yeomans 1990)
but using it proved necessary to minimize the stimulus artifact.
Current strengths were maintained below after-discharge threshold
(Ojemann and Engel 1986). Electrical stimuli were delivered at a
rate of 1 or 2 Hz. The averaged waveform was computed from 30
to 100 stimulus trials and displayed on-line, as described above for
acoustic stimulation. Subjects reported no sensations resulting from
cortical electrical stimulation with these parameters. Time con-
straints prevented us from obtaining frontal lobe response maps to

Figure 2. (A) Lateral surface-rendered MR image showing locations of recording grids and response fields on STG and VLPFC of right cerebral hemisphere. (B) Response fields
on posterolateral STG to binaural CV (/ba/) stimulation identify area PLST. Bipolar electrical stimulation of sites within PLST are identified by lower case letters a–d. (C) Response
field on VLPF to the same /ba/ stimulus. (D–F) Response fields on VLPFC to electrical stimulation of three sites (a–b, a–c, d–e) on PLST. See legend of Figure 1 for further
details.
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electrical stimulation of all of the contacts on lateral STG. Maps to
stimulation of two or more STG sites were obtained in 9 of 12
subjects.

In addition to registering the electrophysiological data with MR
images of individual subjects, we derived a summary map showing
sites of maximal responsiveness in VLPFC to bipolar stimulation of
sites in PLST for all 12 subjects. In obtaining this map, intersubject
variability in gross anatomical landmarks of the STG and IFG was
taken into account by employing a nonlinear elastic transformation
method used successfully in our laboratory in mapping deep struc-
tures of the human brain (Oya et al. 2009). This approach preserves
the spatial relationships between recording and stimulation sites and
the surface anatomical features within each subject and then transfers
these spatial relationships onto a high-resolution single-subject tem-
plate image, rendered in Montreal Neurological Institute (MNI) space,
provided by the International Consortium for Brain Mapping (ICBM).
Individual subject MR images were first aligned with the ICBM

template by applying affine (linear) transformations and maximizing
normalized mutual information. We then applied a nonlinear
thin-plate-smoothing spline algorithm to coregister affine-transformed
individual brains to the template brain using eight local anatomical
landmarks. Specific stimulation and recording sites identified on both
cerebral hemispheres in all subjects were finally mapped onto the
single (left) template brain. For our purposes, using local anatomical
landmarks to render the image and superimpose stimulation and re-
cording sites in MNI space was more appropriate than carrying out a
similar template mapping operation in Talairach space using distant
subcortical reference points.

Results

Figures 1–4 are derived from four subjects in whom we
were able to stimulate at least three STG sites. In these

Figure 3. (A) Lateral surface-rendered MR image showing locations of recording grids and response fields on STG and VLPFC of right cerebral hemisphere. (B) Response fields
on posterolateral STG to binaural click-train stimulation identify area PLST. Bipolar electrical stimulation of sites within PLST are identified by lower case letters a–f. (C) Response
field on VLPF to the same click-train stimulus. (D–F) Response fields on VLPFC to electrical stimulation of three sites (a–b, c–d, e–f ) on PLST. See legend of Figure 1 for further
details.
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figures, the lateral surface-rendered MR images show multi-
contact grid arrays over frontal and temporal cortices and
the waveforms and distributions of averaged evoked poten-
tials recorded from temporal and frontal grids in response
to acoustical stimulation and from frontal grids to electrical
stimulation of the STG. Whereas the maps and the wave-
forms from which they were derived varied in detail across
subjects, they also exhibited several features common to all
subjects in the study. Figure 5 is a map summarizing the
spatial pattern of connectivity across subjects, whereas
Figure 6 and Table 2 illustrate and summarize data related
to the temporal structure of the electrically evoked wave-
form recorded on VLPFC.

Response of PLST and VLPFC to Acoustical Stimulation
Robust, polyphasic AEPs were recorded over posterolateral
STG of both the right (Figs 1B, 2B, and 3B) and left (Fig. 4B)
cerebral hemispheres to a wide range of acoustic stimuli, from
simple click trains to CV utterances (see also Howard et al.
2000; Brugge et al. 2003; Reale et al. 2007; Steinschneider
et al. 2011). AEPs were not uniformly distributed over this
region, however. As a rule, a relatively large AEP was seen
flanked by AEPs of gradually diminishing amplitude. Com-
monly, a second cluster of AEPs of lower amplitude and
different waveform morphology could be seen separated from
the main AEP cluster by relatively unresponsive cortical sites.
We refer to this entire area as PLST even though it may be

Figure 4. (A) Lateral surface-rendered MR image showing locations of recording grids and response fields on STG and VLPFC of a left cerebral hemisphere. (B) Response fields
on posterolateral STG to binaural click-train stimulation identify area PLST. Bipolar electrical stimulation of sites within PLST are identified by lower case letters a–f. (C) Response
field on VLPF to the same click-train stimulus. (D–F) Response fields on VLPFC to electrical stimulation of three sites (a–b, c–d, e–f ) on PLST. See legend of Figure 1 for further
details.
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considered physiologically a mosaic representing perhaps
more than one functional auditory field (Howard et al. 2000).
Prefrontal cortical sites studied exhibited relatively weak (if
any) AEPs in response to the same acoustic stimuli that
evoked robust AEPs on PLST (Figs 1C, 2C, 3C, and 4C).

VLPFC Response to PLST Electrical Stimulation
For each of Figures 1–4 are shown three evoked potential
maps of VLPFC (D–F) that resulted from electrically stimulat-
ing physiologically identified PLST cortex with three different
bipolar electrode configurations. Lower case letters above
each VLPFC map refer to stimulation sites, which are similarly
identified on the acoustical maps of PLST (B) and in the fol-
lowing text. In all cases studied, sites within PLST were ident-
ified, which when stimulated electrically evoked robust,
polyphasic, time-locked activity in VLPFC. The locus of
maximal amplitude of the electrically evoked potential often
was flanked by evoked potentials of gradually diminishing
amplitude. Stimulation of other sites in PLST yielded little or
no evoked activity in VLPFC.

Figure 1B illustrates for one subject the response map ob-
tained from posterolateral STG to the speech utterance /ba/.
The waveform and distribution of robust AEPs are character-
istic of area PLST, as described above. By comparison, the
VLPFC map exhibited widespread low-amplitude oscillations
but little sign of AEPs in response to the same acoustic stimu-
lus (Fig. 1C). Electrical stimulation applied across PLST sites
a–b, which were most strongly activated by the acoustic stimu-
lus, resulted in robust, polyphasic evoked potentials centered
over and essentially confined to pars triangularis (Fig. 1D, rec-
tangle), that prefrontal cortical region (shaded) bounded by
the anterior ascending (AAR) and anterior horizontal (AHR)
rami of the LF and the IFS. When the stimulus was applied
across similarly active PLST sites a–c, however, the resultant
map of VLPFC (Fig. 1E) showed little sign of the evoked
activity that was obtained when stimulus site a was paired
with stimulus site b. Stimulating PLST sites d–e, where the

AEPs were hardly in evidence at all, resulted in evoked
activity over pars triangularis (Fig. 1F) that was of demonstra-
bly greater amplitude than that obtained by electrical stimu-
lation of the most acoustically active PLST sites a–b. In other
words, activity evoked electrically in this area of VLPFC was
not dependent on the stimulus site on PLST being located
where strong AEPs were obtained. Two additional

Figure 5. Distribution of sites of maximal amplitude of the response on the IFG to
electrical stimulation of sites on posterolateral STG for all subjects in the study.
Stimulus and response loci are shown on a template of the left cerebral hemisphere
in MNI coordinate space. See Materials and Methods for details.

Figure 6. Averaged evoked potentials recorded from the site of maximal
responsiveness in VLPFC to electrical stimulation of PLST in each of our 12 subjects
(A–J). Lower case letters a and b designate peaks of two major negative deflections
identified by visual inspection. Latency for each peak with respect to the application
of the electrical pulse is given in Table 2. Stimulus artifact appears as a brief voltage
pulse at the time of stimulation. Asterisks by evoked potentials identify the sites on
the maps shown in Figures 1–4 from which they were derived. Vertical scale to right
of each waveform: 50 μV. Filter: B & J: 1–1000 Hz, others: 2–500 Hz.
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observations of note are (1) that a relatively small change in
the site of stimulation, from a–b to d–e, resulted in a small
shift of the site of maximal responsiveness on VLPFC and (2)
evoked potentials clearly extended to cortex caudal to AAR,
on pars orbitalis. These shifts in position of the sites of
maximal amplitude in VLPFC suggest that the functional pro-
jections from the two PLST sites, as shown by maps of
Figure 1D and F, while closely overlapping need not be
coextensive.

The shift in locus of maximal responsiveness in VLPFC
with a change in stimulus site in PLST is seen more clearly in
Figure 2, from another subject. The PLST activity time-locked
to the utterance /ba/ formed a map similar to the one shown
in Figure 1A obtained using the same acoustic stimulus. A
high-amplitude AEP was flanked by AEPs of diminishing am-
plitude. A second focus of activity appeared just caudal to this
AEP cluster and was separated from it by a relatively non-
responsive site. The area of VLPFC studied was essentially un-
responsive to this utterance. Electrical stimulation of
acoustically active sites a–b on PLST evoked a large response
on pars triangularis just ventral to the IFS. This site of
maximal responsiveness was surrounded by evoked poten-
tials of considerably smaller amplitude and different wave-
form that were distributed over the remainder of pars
triangularis and extending to VLPFC caudal to AAR (pars
opercularis) and ventral to AHR (Fig. 2D, pars orbitalis).
Figure 2E shows that when electrical stimulation was shifted
to PLST sites a–c, two foci of maximal evoked activity ap-
peared on the VLPFC map: one occupied the same site shown
in Figure 2D for stimulation of PLST sites a–b, although its
amplitude was demonstrably lower, while a larger response
appeared on the border between pars triangularis and pars
orbitalis. When the electrical pulse was applied across the
more caudal sites d–e, which now included the second focus
of AEPs within PLST, the evoked potential on the VLPFC
map, which was so prominent when more rostral PLST sites
were stimulated, was no longer in evidence, whereas the
evoked potentials that arose on or near the border of pars tri-
angularis and pars orbitalis became even more prominent
(Fig. 2F). Judging from the grid array, we estimate that in the
case shown in Figure 2, a shift in the PLST location of 1–2 cm

resulted in a shift in the location of maximal activity in pars
triangularis of about 2–3 cm.

A quite different projection pattern is illustrated in Figure 3.
Here stimulating with click trains (100 Hz, 160 ms duration)
resulted in responses depicted in the map of PLST shown in
Figure 3B. One cluster of AEPs was located just rostral to the
projection of the CS, with the focus of maximal activity
located on the lip of the LF. A second focus is identified some
3–4 cm caudally, at the edge of the recording grid. Electrical
stimulation across the more rostral sites a–b, located just
below the loci of maximal activity, resulted in robust evoked
activity very near the AAR, within pars triangularis (Fig. 3D).
Again, there was little sign of AEPs on VLPFC or on prefrontal
cortex considerably dorsal to the IFS (Fig. 3C). Stimulation
across the acoustically activated caudal PLST sites e–f (Fig. 3F)
resulted in a robust evoked response at the same recording
sites identified in Figure 3D on or just caudal to the AHR. Sti-
mulating sites c–d, between these two active areas of PLST,
yielded little in the way of evoked activity in this area of pars
triangularis and essentially none over the rest of the VLPFC
covered by the recording grid (Fig. 3E).

On the left cerebral hemisphere, click-train stimulation also
results in robust AEP activity on posterolateral STG (Fig. 4).
Characteristic of PLST, two clusters of AEPs were identified
separated by less responsive sites having different waveforms
(Fig. 4B). Relatively low-amplitude AEPs were discernible
across the area of VLPFC covered by the recording array
(Fig. 4C). Stimulation across active PLST sites a–b resulted in
a site of maximal responsiveness surrounded by robust
evoked potentials of smaller amplitude distributed widely
within pars triangularis (Fig. 4D). Stimulation of adjacent and
relatively inactive PLST sites c–d yielded only low-amplitude
evoked activity on VLPFC (Fig. 4E). Likewise, stimulation
across sites e–f, which exhibited strong AEPs in PLST to the
click train, resulted in very weak VLPFC responses (Fig. 4F).

Figure 5 presents a summary map of the sites of maximal
responsiveness in VLPFC to bipolar stimulation of sites in
PLST for all 12 subjects in our study. The sites are projected
onto a common high-resolution single-subject template MR
image, as described in the Materials and Methods. With a few
exceptions, these sites fell within pars triangularis.

Time Waveform and Latency Measurements
Averaged evoked potentials in VLPFC resulting from electrical
stimulation of PLST had waveforms characterized by a series
of prominent negative deflections occurring within about
300–400 ms after the electrical stimulus was delivered. Shown
in Figure 6A–L are AEPs obtained at the site of maximal res-
ponsiveness on VLPFC maps of all 12 subjects. Those rep-
resented in the evoked potential maps of Figures 1–4 are so
indicated by an asterisk (Fig. 6A–C and J). Although there was
variability in the waveform across subjects, within about 70
ms after electrical stimulation two major negative deflections
were identified in 11 of our 12 subjects (labeled a and b in
Fig. 6). Because of interference from the stimulus artifact, the
earliest deflection recorded (Fig. 6B and D) was barely dis-
cernible, and in one subject (Fig. 6J) was not seen at all. A
second deflection (b) was observed in all cases, and its
latency varied considerably. Later and broader deflections
were also recorded, and in one case (Fig. 6I) the AEP exhib-
ited relatively long lasting oscillations.

Table 2
Latency to first two negative deflections (a and b) of averaged evoked potential at site of
maximal responsiveness in VLPFC to electrical stimulation of the site in PLST giving rise to that
evoked potential

Subject a b

R57* 13.0 36.4
R74* 14.0 49.5
R42* 14.0 53.4
R21 9.0 36.0
R43 9.0 35.9
L59 17.0 49.4
L64 18.5 67.4
L66 17.2 30.2
L62 14.5 33.4
L37 10.0 47.0
L40 12.1 28.5
L93* – 27.1
Mean 13.48 41.18
STD 3.28 12.15

Asterisks refer those evoked potentials similarly identified on the maps of Figures 1–4 and the
expanded waveforms shown in Figure 6.
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Table 2 gives the latency to the peak of each of the earliest
identified negative deflection for each subject. The latency to
the peak of the earliest (a) deflection ranged from 9.0 to 18.5
ms (mean: 13.48, S.D.: 3.28). We interpret this deflection as
the sign of the initial invasion of afferent input to VLPFC re-
sulting from stimulation of PLST. The amplitude and latency
of the later deflection (b) exhibited considerably more inter-
subject variability (mean: 41.19, S.D.: 12.15), with the a-to-b
interval ranging from 13.0 to 48.9 ms. This second deflection
reflects later arriving afferent activity and/or manifestations of
local intracortical processing.

Discussion

The area we mapped acoustically on the posterolateral aspect
of the STG corresponds to auditory area PLST, as described
previously (Howard et al. 2000; Reale et al. 2007; Steinschnei-
der et al. 2011). In response to a wide range of simple and
complex sound, robust polyphasic AEPs were recorded,
occasionally at two separate sites, and characterized by a site
(or sites) of maximal responsiveness flanked by AEPs of
gradually diminishing amplitude. The same acoustic stimuli
that activated PLST, including human speech utterances, were
relatively ineffective in generating AEPs on VLPFC, although
the same VLPFC sites were shown to receive a robust func-
tional projection from PLST.

Although not the primary aim of this study, our finding of
a relative lack of responsiveness within human VLPFC cortex
to acoustic stimulation seems at odds with results of single
neuron recordings from areas 45 and 12vl/47 in monkey.
These fields, which together constitute the auditory domain
of VLPFC, contain neurons that exhibit robust activity in
response to a wide variety of sounds (Romanski and
Goldman-Rakic 2002; Cohen et al. 2004; Romanski et al.
2005; Russ et al. 2008; Romanski and Averbeck 2009).
Because our electrode grids tended to be centered over pars
triangularis (area 45), we were unable to map systematically
pars orbitalis, which in human is identified cytoarchitectoni-
cally as area 47. Moreover, our stimulation sites were in the
posterior aspect of the STG, a region of the monkey STG that
would tend to project most heavily on area 12vl/47 (Romanski
et al. 1999a, 1999b). It is possible that although areas 45 and
12vl/47 represent in the monkey the acoustic domain of
VLPFC, the acoustic domain in the human may be more re-
stricted and hence may have been beyond the reach of our
recording arrays (Fecteau et al. 2005). It is unlikely that our
auditory stimuli per se were not sufficient to evoke responses,
as we employed a variety of sounds from click trains to
human utterances. Perhaps, activation of VLPFC requires the
use of even more complex speech stimuli, for example,
speech sounds with emotional overtones (Fecteau et al.
2005). We relied on the AEP to capture mainly the cortical sy-
naptic activity tightly phase locked to the acoustic or electrical
stimulus. The AEP does not reveal, however, nonphase-locked
activity that might be present in VLPFC recordings as found in
PLST recordings, particularly at high gamma band frequencies
(Steinschneider et al. 2011). Another possible explanation
relates to the level of arousal or attention of our subjects (see
Walter 1964). In our experiments, subjects were not required
to perform auditory-related tasks but were simply asked to
listen to the auditory stimuli. Single-unit studies of the audi-
tory domains of monkey prefrontal cortex cited above show

that auditory sensitivity and selectivity of neuronal responses
were influenced by task-related behavior. Thus, the fact that
we were largely unable to excite pars triangularis and sur-
rounding VLPFC acoustically with stimuli that were highly ef-
fective in activating PLST may be attributed not so much to
the nature of the sensory stimulus per se but to the fact that
behavioral conditions were simply not sufficiently favorable
to functionally gate the flow of sound evoked activity from
PLST to VLPFC target sites.

Typically, in response to bipolar electrical stimulation of
adjacent sites in PLST, the resultant evoked potentials re-
corded on VLPFC were clustered on pars triangularis. This
finding of a functional projection from PLST to VLPFC agrees
with results obtained in monkey using modern anatomical
tract-tracing approaches (Pandya and Yeterian 1996; Hackett
et al. 1999; Romanski et al. 1999a, 1999b; Petrides and
Pandya 2009) and in humans using RSFC analysis (Kelly et al.
2010). Taking into account some degree of intersubject varia-
bility, pars triangularis is generally accepted to be that portion
of the IFG occupied by Brodmann’s area 45 (Amunts et al.
1999). In the rhesus monkey, cortices of the belt and parabelt
systems of the STG project upon prefrontal fields (Hackett
et al. 1999; Romanski et al. 1999a, 1999b) including areas ex-
hibiting cytoarchitectonic characteristics similar to those of
areas 45 and 47 of human (Petrides and Pandya 2002, 2009).

Time constraints precluded our stimulating all-electrode
contacts positioned in PLST. Nonetheless, the response maps
obtained showed that changing the stimulating sites within
PLST often resulted in demonstrable changes in the size and
distribution of evoked activity within pars triangularis. For
instance, the robust evoked activity associated with one stimu-
lus configuration could disappear entirely and a new focus of
activity associated with the new stimulus configuration could
appear. In one instance, however, electrical stimulation of
widely separated STG sites of acoustic responsiveness resulted
in maximal evoked activity at the same site on the IFG. We
also noted that there was not a strong relationship between
the magnitude of the auditory evoked response recorded at a
PLST site and the magnitude of the evoked potential recorded
on VLPFC when electrical stimuli were delivered to that PLST
site. Stimulation of some acoustically activated PLST sites
could result in no demonstrable evoked activity on VLPFC
covered by the recording array. These findings are consistent
with modeling data showing that stimulation with adjacent
bipolar electrodes is very effective in producing highly loca-
lized current flows (Nathan et al. 1993). Taken together, the
results suggest that the PLST to VLPFC projection is modular,
highly focused, and possibly topographically organized.

The waveform of the electrically evoked potential recorded
at the site of maximal responsiveness on VLPFC typically ex-
hibited 2–3 major negative deflections during the first 300–
400 ms after an effective electrical stimulus was applied to
PLST (in one subject, the stimulus artifact obscured the poss-
ible presence of the earliest deflection). The average latency
of the peak of the first deflection was 13.48 ms, with onset
time occurring several ms earlier. Although somewhat ob-
scured by the stimulus artifact, a deflection as early as 9.0 ms
after PLST stimulation was detected in two subjects. The
second deflection had peak times ranging from 27.1 to 67.4
ms (mean: 41.18). Using electrical-stimulation tract tracing in
human neurosurgical patients, Matsumoto et al. (2004) re-
ported a relatively weak functional projection from the
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posterior language area of the temporal lobe to the anterior
language area of the frontal lobe. In that report, the function-
ally connected cortical areas were identified not by their ana-
tomical location or by their responsiveness to acoustic
stimulation but by results of clinical (speech arrest) electrical-
stimulation functional-mapping methods. In one of their
documented cases, electrical stimulation of posterior STG re-
sulted in an averaged evoked potential recorded from a site
on VLPFC. Two negative deflections were apparent in the
averaged evoked potential, and these had latency values in
the range corresponding to the later deflections we describe
in the current report. The fact that Matsumoto et al. did not
detect earlier evoked activity may have been due to a large
electrical artifact associated with the electrical stimulus.

We interpret the earliest deflection we detected in the elec-
trically evoked response as the sign of the initial invasion of
afferent input to VLPFC resulting from stimulation of PLST.
This evoked activity may have resulted from signal propa-
gation along one or more temporofrontal pathways, as de-
scribed in monkey (Petrides and Pandya 1988, 2009) and
more recently in humans using DTI and anatomical MRI (Kier
et al. 2004a, 2004b; Catani et al. 2005; Catani 2009; Glasser
and Rilling, 2008; Powell et al. 2006; Parker et al. 2005). One
pathway, the arcuate fasciculus, arises from caudal STG (pos-
terior PaAlt and Tpt of Galaburda and Sanides (1980)) and
follows a general dorsal and dorso-lateral trajectory around
peri-Sylvian cortical regions. The arcuate fasciculus in human
has been shown by DTI to be demonstrably larger than the
dorsolateral temporofrontal white matter pathway found in
the brains of chimpanzees and macaque monkeys (Rilling
et al. 2008). A second pathway, which originates in the midre-
gion of STG (PaAlt and TS3 of Galaburda and Sanides
(1980)), courses through the external capsule to terminate in
VLPFC (including area 45), as well as DLPFC and frontal polar
regions. Both caudal and mid-STG sources of temporofrontal
projections would likely include neurons within area PLST.
The third pathway arises from rostral STG (TS1 and TS2 of
Galaburda and Sanides (1980)) and reaches orbitofrontal
cortex by way of the uncinate fasciculus. Cortex of STG giving
rise to this path is likely rostral to area PLST as mapped in the
present experiments.

Taking the arcuate fasciculus to be the longest candidate
pathway between PLST and VLPFC, we estimate it to be about
14 cm in length based on MRI measurements. Given this dis-
tance and an average peak latency of 13.5 ms, the conduction
velocity of a subpopulation of axons in this pathway would
be 10 m/s, which is well within the limits of conduction vel-
ocity of central axons (Waxman and Swadlow 1977). If we
take the onset latency of the AEP to be considerably shorter
than that, then transmission velocity of axons in the arcuate
fasciculus could approach 40–50 m/s. If the temporofrontal
route of the external capsule were involved, our estimate of
the conduction time would be reduced to account for the
shorter temporofrontal distance, assuming no intervening sy-
napses. Regardless of the route over which VLPFC was acti-
vated by PLST stimulation, the early afferent input could well
have arisen from the large (and presumably rapidly conduct-
ing) pyramidal cells that populate layers III and V of cortex of
the posterolateral STG (Bailey and Bonin 1951; Braak 1978).
Although the latency data suggest rapid transmission between
PLST and VLPFC, a question remains as to whether this is a
monosynaptic relationship. The later deflections in the

electrically evoked response are more difficult to interpret.
They may represent the invasion of delayed afferent activity
arriving over slower conducting or polysynaptic temporofron-
tal pathways or perhaps local intracortical activity triggered
by the earlier afferent volleys. While there are still many un-
settled questions regarding the role of the thalamus and other
subcortical centers in corticocortical interactions (see
Sherman and Guillery 2006), we need also to consider corti-
cothalamic pathways in the context of the functional connec-
tivity observed between a “sensory” cortex on temporal lobe
and what has been described as an “action cortex” of prefron-
tal cortex (Fuster 2008).

The evidence we have provided for a functional connection
between an auditory field on posterolateral STG and the IFG
applies to both the left and right cerebral hemispheres regard-
less of handedness and cerebral dominance of the subjects.
Considering the possibility that this connectivity is involved in
speech/language processing, it would not be surprising to
find interhemispheric differences. Whatever those differences
may have been, our sample size was too small and/or the
intersubject variability was too great to reveal them.

It is now well recognized that seizure activity arising from
the mesial temporal lobe can alter neural structures some dis-
tance from the seizure focus (Moran et al. 2001; Bernasconi
et al. 2004; Thivard et al. 2005; Gross et al. 2006; Mueller
et al. 2006; Powell et al. 2007; Focke et al. 2008). While our
patient-subjects were diagnosed with medically refractory epi-
lepsy, any pathological changes that might have been associ-
ated with their disorder were not of sufficient magnitude to
alter the fundamental finding of robust functional connectivity
between posterolateral STG and the IFG.
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