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Functional connections between auditory cortical fields in humans
revealed by Granger causality analysis of intra-cranial evoked

potentials to sounds: Comparison of two methods
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Abstract

Knowledge of neural interactions amongst cortical sites is important for understanding higher brain function. We studied such
interactions using Granger causality (GC) to analyze auditory event-related potentials (ERPs) recorded directly and simultaneously
from two physiologically identified and functionally interconnected auditory areas of cerebral cortex in human neurosurgical patients.
Two methods of GC analysis were used and the results compared. Both approaches involved adaptive autoregressive modeling but

differed from each other in other ways. Results obtained by using the two methods also differed. Fewer false-positive results were
obtained using the method that suppressed the ERP non-stationarity and that expressed the GC as the sum of model coefficients,
which suggests that this is the more appropriate approach for analyzing ERPs recorded directly from the human cortex.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Auditory cortex of the human is located on the supe-
rior temporal gyrus of the temporal lobe. It is made up
of multiple fields that are thought to be interconnected
and organized into three hierarchical processing levels
referred to as the auditory ‘core’, ‘belt’ and ‘parabelt’.
This organizational model, which was originally
derived from anatomical and physiological studies in
non-human primates, is seen operating in a hierarchical
fashion to process complex acoustic signals, such as
communication sound and speech (reviewed by Kaas

and Hackett, 2000; Rauschecker, 1998). Although this
model has been posited for human cortex (Binder et al.,
2000; Wessinger et al., 2001), there has been little direct
experimental evidence for the cortico-cortical connec-

ed.
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Fig. 1. Two views of human brain specimen showing the locations
of the posteriolateral superior temporal field (PLST) on the superior
temporal gyrus and the auditory core area on Heschl’s gyrus (HG). (A)
Lateral view of the surface of the right cerebral hemisphere showing
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LST. (B) HG and surrounding cerebral cortex viewed from above
fter removing overlying parietal lobe. Arrows indicate the functional
onnectivity between HG and PLST.

ions required to support such a processing scheme. The
natomical tract-tracing methods that have been used so
ffectively in mapping auditory cortical fields and their
onnectivity in the living monkey brain cannot be used
n humans. An alternative method of tracing auditory
ortico-cortical pathways in the human brain involves
ocal electrical stimulation of one cortical site while
ystematically mapping the resultant evoked activity
rom distant sites (Brugge et al., 2003, 2005; Greenlee et
l., 2004; Howard et al., 2000; Liegeois-Chauvel et al.,
991; Matsumoto et al., 2004). Using this approach we
ave shown functional connectivity between auditory
ortex on mesial Heschl’s gyrus (HG), which we
onsider to be core cortex, and an auditory area on the
ateral surface of superior temporal gyrus, which we
efer to as the posterior lateral superior temporal field
PLST) and interpret to be a part of the auditory belt or
arabelt (Brugge et al., 2003, 2005; Howard et al., 2000).
ig. 1 shows on a human brain specimen the location

f these two auditory fields, with arrows indicating the
eciprocal functional connectivity between them.

Electrical mapping of functional connectivity pat-
erns in temporal cortex provides important information
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on timing, topography and direction of neural trans-
mission, but leaves open the question of functional
interactions presumably taking place between the inter-
connected fields under normal listening conditions. One
approach to gaining this information is the so-called
Granger causality (GC, Granger, 1969; Freiwald et al.,
1999). Granger causality is defined in statistical terms
and expressed as predictability: one stochastic process is
causal to another if at a given time point the predictability
of the second process is improved by including measure-
ments from the immediate past of the first. When applied
to interactions between distant brain sites, knowledge
about the activity recorded from one cortical location has
been used to predict activity recorded simultaneously at a
second location (Brovelli et al., 2004; Chen et al., 2004;
Ding et al., 2000; Hesse et al., 2003; Kaminski et al.,
2001; Liang et al., 2000).

In the present study we measured during passive
listening in humans the directional interactions that
occurred between the core auditory cortex on posterome-
sial HG and auditory cortex on posterior lateral superior
temporal gyrus, areas which have been shown previ-
ously to be functionally interconnected (Brugge et al.,
2003, 2005; Howard et al., 2000). Data were audi-
tory event-related potentials (ERPs) recorded directly
from the cortex of neurosurgical patients. ERPs belong
to the class of non-stationary signals (Oppenheim and
Schafer, 1975) in which both mean voltage and vari-
ance tend to vary over time. Time-variant approaches
to estimate GC are required to account for this non-
stationary property. Two time-variant GC methods have
been employed in the past to study functional inter-
actions in the brain. One (Method 1) analyzed ERPs
recorded from the scalp (Hesse et al., 2003) while the sec-
ond (Method 2) analyzed local field potentials recorded
intra-cranially (Ding et al., 2000; Kaminski et al., 2001).
Both methods involve an adaptive autoregressive model
but differ from each other in two important respects.
First, Method 2 but not Method 1 pre-processes data
to suppress signal non-stationarity. As we will demon-
strate, skipping the pre-processing step can result in
spurious causality responses. Second, Method 1 uses a
ratio of error-variance produced by bi-variant modeling,
whereas Method 2 employs the sum of coefficients on the
off-diagonal coefficient matrices. Although both meth-
ods can be considered causality measures in the Granger
sense, taking a ratio and interpreting its results needs to
be done with care. At the start of our work it was unclear

to us which approach would best apply to our near-field
ERPs, hence we carried out GC analyses on the same
dataset using both approaches and compared the results
obtained.
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2. Materials and methods

Subjects were five neurosurgical patients undergoing diag-
nosis and treatment of intractable epilepsy. All gave written
informed consent and the protocols were approved by the

University of Iowa Institutional Review Board. Depth elec-
trodes were surgically inserted into HG while grid electrodes
(8 × 8 array, 5 mm inter-electrode distance) were implanted
directly on the pial surface of the superior temporal gyrus.
Reference electrodes were either a surface contact placed on

Fig. 2. Comparison of two methods of GC analysis for one subject. (A and
obtained from simultaneous intracranial recording in posteromesial HG and P
Granger causality (GC) profiles (dark lines) and single trial data (gray lines
et al., 2003) and Method 2 (from Ding et al., 2000; Kaminski et al., 2001).
duration is approximately 40 ms for click trains. Direction of causal influence
89 (2007) 198–207

inferior temporal gyrus or attached to the skull at the midline.
Electrode recording sites were localized using intra-operative
photographs and 3D MRI (for further methodologic details
see Howard et al., 1996, 2000). Electrodes were placed on the
right (non-dominant) hemisphere on four subjects and on the
left (dominant) hemisphere of the fifth.
Synthesized consonant-vowel sounds (e.g. /ba/, duration
∼250 ms), click trains (5 clicks, 10 ms inter-click interval) or
300 ms tone bursts (2 kHz, 5 ms rise/fall time) were used as
stimuli. The sounds were delivered repetitively (2 s intervals)

B) Averaged ERPs (dark lines) and single trial records (gray lines)
LST in response to a brief click train (n = 100 trials). (C–F) Averaged
) obtained from ERP results shown above by Method 1 (from Hesse
In this and other figures, the stimulus onset is at time zero. Stimulus
is given above the respective GC analyses.
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average ERP from each site exhibits early deflections
associated with incoming afferent activity and later, and
larger, deflections which an be attributed to intra-cortical
interactions. Considerable time-dependent trial-to-trial

Fig. 3. Comparison of two methods of GC analysis averaged for eight
experiments in five subjects. Stimuli were click trains (two experi-
H. Oya et al. / BioS

t a comfortable suprathreshold level in blocks of 100 identi-
al trials through binaurally placed insert-earphones. During
ecording sessions patients were usually awake and resting in
ed, and were instructed to listen passively to the sounds.

Signals recorded simultaneously from surface and depth
lectrode contacts were amplified, filtered (1–1000 Hz), digi-
ized (2 kHz) and stored for offline analysis. Line interference
as reduced by a multi-tapering method (Mitra and Pesaran,
999). To speed up computation, electrical potentials were first
e-sampled to 250 Hz. Typically one site in posteromesial HG
nd one on posterolateral superior temporal gyrus exhibits an
RP having an overall amplitude larger than ERPs around it.

n each of the five subjects studied we subjected the ERPs
ecorded from these two sites to GC analyses.

In Method 2, but not in Method 1, a pre-processing step
as introduced prior to autoregressive modeling in order to

ompensate for the non-stationary nature of the ERP signal
Ding et al., 2000). In this step, the average ERP waveform was
rst subtracted from the individual recordings. The resultant
aveforms were then divided, point-by-point, by the ensemble
ariance. The result was that the ensemble mean and variance
ecame constant over time.

The first step in the application of our autoregressive model
as to choose how much of the past history of the ERP recorded

t one channel should be used in predicting the influence on
he ERP recorded from the second channel. This time window
s referred to as the ‘order’ for the ERP signals. To choose the

ost appropriate order a Bayesian information criterion (BIC)
unction (Schwarz, 1978) was first calculated for all 100 record-
ng trials in a dataset over the full length (900 ms) of each trial.
or each trial the time window associated with the minimum in

he BIC function was found. The distribution of time windows
or each 100-trial dataset was then plotted, and the time window
orresponding to the 90th percentile of that distribution was
aken as the optimal order for that dataset. This approach tended
o avoid under-estimation while taking into account outliers. A

edian order value of 3 (inter-quartile range 2) was obtained
eight experiments), which corresponds to 12 ms. This order is
nly slightly less than the one used by Ding et al. (2000) in his
tudies of local field potentials in monkey.

The second step was the introduction of a Kalman filter,
hich was used to track the time-variant state of the system

daptively in a recursive way. When the disturbances and initial
tate are Gaussian the Kalman filter is optimal, and it remains an
ptimal ‘linear’ estimator even when the Gaussian assumption
s dropped (Appendix A). We attempted to improve the tracking
apability of the Kalman filter by manipulating the magni-
ude in the change of the autoregressive coefficients using

normalized innovation-squared criterion (Appendix A.1).
he estimated model coefficients and disturbance covariance
llowed estimation of the inter-relationship between record-
ng channels. This inter-relationship between ERPs was then

xpressed either as the ratio of the disturbance error variance
ith or without an ERP from the second recording site (Method
, Appendix B.1), or as the sum of coefficients on the off-
iagonal coefficient matrices (Method 2, Appendix B.2). The
89 (2007) 198–207 201

causality measure derived from Method 2 is also referred to
as ‘direct causality’ (Kaminski et al., 2001). Repeating this
procedure for all time points in a response trial produced a
GC time waveform (causality profile). For each trial a moving
time-window (corresponding to the order of the autoregressive
model) was adopted for calculating the model coefficients over
the peri-stimulus period of 900 ms (200 ms before and 700 ms
after stimulus onset). The results of averaging 100 trials were
compared. Further details describing the two approaches used
are found in Appendices A and B.

3. Results

The polyphasic ERP recorded from posteromesial
HG could be distinguished from that recorded from
PLST on the posterolateral superior temporal gyrus
(Howard et al., 2000). As seen in Fig. 2 A and B, the
ments), tone bursts (two experiments) or a consonant-vowel sounds
(four experiments). Directions of causal influence shown are from HG
to PLST (black line) and from PLST to HG (gray line). The aver-
age pre-stimulus causality has been subtracted to better reveal the
stimulus-related GC changes.



ystems
202 H. Oya et al. / BioS

variation is also seen, and in this case is demonstra-
bly larger in PLST as compared to posteromesial HG.
The GC profiles computed from these waveforms using
Methods 1 and 2 are shown in Fig. 2C–F. Those on
the left represent influences in the direction from HG to
PLST, whereas those on the right show influences in the
opposite direction. Fig. 3 compares the averaged causal-

ity profiles from eight experiments in our five subjects
derived from the two methods. The averaged profiles
closely resemble those shown for the one subject in
Fig. 2 and further reveal a discrepancy between the two

Fig. 4. Effect of data pre-processing on the GC. (A and B) Averaged ERPs ob
and PLST in response to a brief click train (n = 100 trials). (C and D) Time co
in A and B, respectively. S.D.s are not constant over the time course of ERP
(ASI) of the same dataset shown in A and C with pre-processing (black line;
as E showing the average results of eight datasets from five subjects.
89 (2007) 198–207

approaches we compared. In both Methods 1 and 2, GC
influences computed in the direction from HG to PLST
and from PLST to HG appeared as incremental changes
time-locked to the onset of the stimulus and in close tem-
poral registration with the ERP. Both methods yielded
GC profiles that showed the duration of the influence to
be direction dependent. Causality time profiles differed,

however, between the two methods. Method 1 produced
a sharp transient peak in causality for both directions,
which decreased compared to the prestimulus condition.
Method 2, on the other hand, yielded a gradual and more

tained from simultaneous intracranial recordings in posteromesial HG
urse of ensemble standard deviation (S.D.) of the recording presented

and could vary across recording sites. (E) Averaged stability index
Method 2) or without pre-processing (gray line; Method 1). (F) Same
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ustained increase in causality for both directions and
ever dropped below zero (by definition).

To study further the possible cause(s) of the discrep-

ncy between the two methods employed, we examined
ore closely the time-dependent variation of ERPs from

nother subject shown in Fig. 4A and B. Fig. 4C and D
hows the accompanying time-dependent variance. The

ig. 5. Negative control. (A) Average ERPs from HG in one subject
dark line) in response to a consonant-vowel sound (/da/) superimposed
n an average electrocorticographic (ECoG) signal from PLST (grey
ine) of a different subject (n = 100 trials). (B and C) Averaged GC
rofiles computed by both methods from data shown in A (n = 100
rials). The average pre-stimulus causality has been subtracted to better
eveal the stimulus-related GC changes. Black lines indicate causal
nfluence from HG to PLST and gray lines indicate PLST to HG.
purious results seen using Method 1 are not seen using Method 2.
89 (2007) 198–207 203

addition of the data pre-processing step in the analy-
sis strongly suppressed the non-stationarity as revealed
by the ‘average stability index’ (ASI) shown in Fig. 4E
and F. The ASI is the logarithm of the largest (absolute)
eigenvalue of the companion matrix of the autoregressive
coefficients averaged across trials. To the extent the ASI
remains below zero the autoregressive model is consid-
ered stationary. As applied to the data in Fig. 4A and B,
the gray line in Fig. 4E shows ASI obtained by Method 1
whereas the black line show the ASI obtained by Method
2. Method 2 resulted in suppression of non-stationarity
that was almost complete as reflected in a nearly constant
and below-zero ASI over the analysis period of 900 ms.
The similar picture emerged when the ASI, obtained by
the two methods, was averaged over all datasets of the
five subjects (Fig. 4F).

Although the data presented suggest that spurious
results of GC such as those shown in Figs. 2 and 3 could
arise from non-stationarity in the ERP signal, other fac-
tors could be involved here as well. We further subjected
the two analysis methods to a pair of signals in which
the causality was necessarily zero: one of the pair was an
ERP recorded on HG to a speech sound and the other an
ongoing electrocorticographic (ECoG) signal recorded
in silence from PLST of a different subject (Fig. 5A).
Method 1 showed noticeable stimulus-locked changes
in GC (Fig. 5B) while Method 2 yielded GC profiles that
remained relatively constant over the recording period
(Fig. 5C).

4. Discussion

Granger causality was used to analyze functional
influences between two auditory cortical fields known to
have functional connections. We compared two methods
of computing GC based on ERPs recorded directly from
the cortex of human neurosurgical patients. Method 1
was applied originally by Hesse et al. (2003) to ERPs
recorded from the human scalp. Method 2 was first
described by Ding and his colleagues (Ding et al., 2000;
Kaminski et al., 2001) in studies of ERPs recorded
intracranially. We found that the results of Method 2
more faithfully represented our ERP data than did the
results of Method 1.

The discrepant results we obtained by comparing
the two approaches could be partly due to the non-
stationary nature of the ERP signal. Hesse et al. (2003)
did not test for non-stationarity in their GC analysis of

scalp-recorded ERPs. On the other hand, their ERPs had
signal-to-noise ratios that were smaller than those of
the intracranial ERPs studied by Ding et al. (2000) and
Kaminski et al. (2001) and by us. Hence non-stationarity
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may have had a far smaller impact on the outcome of their
GC analysis. Expressing GC as a ratio (Method 1) instead
of a sum of coefficients (Method 2) could also create
greater sensitivity to signal non-stationarity and hence
lead to spurious results. Estimating the noise covariance
is not always easy as the driving noise level may change
over time. Thus taking the ratio of noise covariance can
have a direct impact on the results obtained.

It seems clear that three steps were crucial in the GC
analysis of our ERP data. First, the Kalman filter was
used to track the autoregressive coefficients more effi-
ciently. Second, the sum of model coefficients was used
to express GC, which proved to be more stable than
the ratio of disturbance of noise variance. Third, and
most importantly, data were pre-processed to remove
the deterministic evoked response, which reduced signal
non-stationarity.

Our preliminary results using Method 2 from a limited
number of subjects suggest that auditory core cortex on
HG and auditory area PLST on the posterolateral supe-
rior temporal gyrus interact in a reciprocal way during
passive listening. In addition, the data indicate that the
time course of the interactions is direction-dependent.
These findings are consistent with results of electrical
stimulation tract-tracing experiments in human temporal
cortex (Brugge et al., 2003, 2005; Howard et al., 2000).
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Appendix A

We have organized the appendix into two parts: (A)
background of autoregressive modeling common to the
two methods, and (B) technical details of each method.

A.1. Time variant multi-dimensional autoregressive
modeling

A common approach for modeling uni-variate time
series is the autoregressive (AR) model, which is simply
a linear regression of the current value of the time series
against one or more prior values (p) of the series. The

value of p is called the order of the AR model. The gen-
eral equation for a stationary first-order linear-predictive
time-varying autoregressive model is described by fol-
lowing equation:y(t) = ξy(t − 1) + �(t)where y(t) is
89 (2007) 198–207

the observed time series, ξ is the autoregressive coef-
ficient and ε(t) is a white noise sequence, the so called
driving noise. If y(t) is a multivariate vector and coef-
ficients ξ are time dependent, the model becomes a
time-variant vector autoregressive model (VAR) and has
been applied to investigate correlation of electrical activ-
ity between different brain sites (Arnold et al., 1998;
Möller et al., 2001). The time-variant VAR we employed
in this study was represented in state-space form, which
can be estimated by Kalman filter recursion as described
below.

A.1.1. State-space formulation of the autoregressive
model

The m-dimensional vector autoregressive model of
order p can be expressed in following state-space form:

X(t) = F (t) X(t − 1) + W(t)

Y (t) = H(t) X(t) + E(t)

where F(t) is the transition matrix with dimension
(m2p × m2p), and H(t) is the measurement matrix with
dimension (m × m2p), defined as

H t = Im ⊗ [Y t−1, Y t−2, . . . ,Y t−p]

Im is the identity matrix of dimension m and ⊗ represents
Kronecker’s matrix product. W(t) is the (m2p × m2p)-
dimensional zero-mean white process-noise sequence
with the following covariance matrix.

E[W tW
T
t ] = Q(t)

E(t) is the (m × m)-dimensional zero-mean white
observation-noise sequence with the following covari-
ance matrix:

E[Et ET
t ] = R(t)

Xt are state variables. In this application, Xt are the
autoregressive coefficient matrices at time t and are
defined as follows:

Xt = Vech[A1(t), A2(t), . . . , Ap(t)]

where An(t) is the n-lag autoregressive coefficient matrix
at time t, Vech is the vectorization operator, and Yt is the
m-dimensional data vector (observation vector) at time t.
The coefficient matrix Xt that represents the underlying
structure of the system is hidden and what we can observe

is the time series Y(t). The aim here is to estimate Xt

from the observed Y(t). Here, we assume the coefficients
evolve according to a random walk. So F(t) is the identity
matrix.
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.1.2. Recursive adaptive estimation of
ime-varying state by means of a Kalman filter

A Kalman filter is commonly used for tracking time-
ariant states (e.g., navigation, radar target tracking and
ime series prediction in economics) (Ljung, 1987).
alman filter recursion can be written as follows:

t = �
Σt|t−1H(t)T[H(t)

�
Σt|t−1H(t) + R(t)]−1

�

t|t = �
Σt|t−1 − KtH(t)

�
Σt|t−1

ˆ
t+1|t = F (t)[X̂t|t−1 + Kt(Y (t) − H(t)X̂t|t−1)]

�

t+1|t = F (t)
�
Σt|tF (t) + Q(t)

ˆ 0|−1 = X̂0

�

0|−1 = Σ0

here Kt is the Kalman gain matrix,
�
Σt|t the a priori

ovariance matrix of the estimation error and
�
Σt+1|t the

posteriori covariance matrix of the estimation error. To
et the observation noise covariance R(t), we estimated
ith the following procedure.
State-noise covariance Q(t) determines the speed of

racking. We gave equal tracking capability to all coeffi-
ients, i.e. Q(t) = σI, where I is the identity matrix with
imension (m2p). In general, σ can be time-variant and
daptively changed. For doing this, we monitored the
moothed normalized innovation squared (NIS) func-
ion. NIS can be thought of as the estimated variance
f standardized prediction errors:

IS(t)=NIS(t − 1) − a[NIS(t − 1) − v(t)TS(t)−1v(t)]

here S(t) is the covariance of innovation produced by
he Kalman recursion:

(t) = H(t)
�
Σt|t−1H(t) + R(t)

Under the hypothesis that the filter is consistent, NIS
as a chi-square distribution with L degrees of freedom
L is the effective window length, i.e., L = m/α. Here
e set α at 0.03). We started σ at 10−3.5, and changed
according to the following criterion. If NIS(t) fell

ithin 90–95% confidence intervals, σ for the next time
oint became 10−2.5; if NIS(t) exceeded 95%, σ became
0−2.0. The initial level of σ was set to 10−3.5.

X̂t|t = X̂t|t−1 + Kt(Y (t) − H(t)X̂t|t−1) is the optimal

stimator of X(t) based on the observations up to Y(t).
he noise term not explained by the model is calculated
s

(t) = Y (t) − H(t)X̂t|t
89 (2007) 198–207 205

Its covariance V(t) is estimated by following the expo-
nentially discounted average:

V (t) = V (t − 1) − γ[V (t − 1) − E(t)T �
Σt|tE(t)]

Here, γ is the discounting factor, which was set to 0.03.
This V(t) was used for R(t) in the Kalman recursion
shown above.

This produces estimators of the autoregressive model
coefficients and the innovation covariance matrix for
each time point. For this estimation procedure, no sta-
tionary restriction was imposed on the autoregressive
coefficient matrix. The stationarity of the estimated
autoregressive model can be checked by examining,
point by point, the characteristic roots of the time-variant
coefficient matrix. In both Methods 1 and 2, we per-
formed autoregressive modeling on each ERP trial, and
the average time profiles of GC obtained for different
datasets were compared.

Appendix B. Inferring directed linear
dependencies: technical details

B.1. Method 1

In a vector autoregressive model, linear dependence
and feedback are used to estimate Granger causality (GC,
Geweke, 1982). For the following bi-variate autoregres-
sive model:

Y (t) =
p∑

i=1

Γi(t)Y (t − i) + ε(t) with var[ε(t)] = Ω(t)

and the uni-variate autoregressive model, in which one
of the time series is omitted from the system:

y1(t) =
p∑

i=1

Γ 1
i (t)y1(t − i) + u1(t)

y2(t) =
p∑

i=1

Γ 2
i (t)y2(t − i) + u2(t) with

var[u1(t)] = Θ1(t) var[u2(t)] = Θ2(t)

Here the matrices Γ are the autoregressive coefficient
matrices consisting of xt|t and the time-variant variance
of the disturbance terms in the system; p is the model
order, ε and u are estimated as follows:
Ω(t) = Ω(t − 1) − a[Ω(t − 1) − ε(t)ε(t)T],

Θ1(t) = Θ1(t − 1) − a[Θ1(t − 1) − u1(t)u1(t)T],

Θ2(t) = Θ2(t − 1) − a[Θ2(t − 1) − u2(t)u2(t)T]
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Here, we set the smoothing constant (a) to 0.03 in
order to suppress noisy variations in the results. Time-
variant GCs in the opposite direction between channel-1
and channel-2 are, respectively, GC1–2(t) and GC2–1(t).
These are defined as

GC1–2(t) = log |Θ2(t)|/log |Ω2,2(t)|,
GC2–1(t) = log |Θ1(t)|/log |Ω1,1(t)|

For the calculation of the causality, we fit the uni- and
bi-variate models, as described in section A, with Θ and
Ω replaced by V(t) in the Kalman filter.

B.2. Method 2

First, the ERP individual sweeps were pre-processed
according to Ding et al. (2000). Namely, the ensem-
ble average waveform was subtracted from individual
recordings followed by dividing the resulted waveforms
by the ensemble variance point by point, so that the
ensemble mean and variance became constant over
time. Then, we applied bi-variate autoregressive mod-
eling and the estimated coefficient matrices were used
to infer the directed linear dependencies as described
below.

In the autoregressive model in the previous section:

Y (t) =
p∑

i=1

Γi(t)Y (t − i) + ε(t)

The elements in �i(t) represent linear time-lagged
dependence (i: time lag). At a given time, lag i, the
diagonal elements in �i(t) represent self-connectivity
and the off-diagonal elements inter-channel connectivity.
For example, in the following first order autoregressive
model with dimension of 2:[

sig1(t)

sig2(t)

]
=

[
a1 a2

a3 a4

] [
sig1(t − 1)

sig2(t − 1)

]
+

[
ε1(t)

ε2(t)

]

a1 and a4 represent self-connectivity at lag 1,and a2 and
a3 represent inter-channel connectivity at lag 1.

In the above coefficient matrix, the influence from
sig1 at t − 1 is expressed explicitly by the coefficients
a1 and a3. So the ratio abs(a3)/(abs(a1) + abs(a3)) rep-
resents the relative strength of influence from sig1 to sig2
relative to the total output of sig1 at time t − 1.

Normalized direct causality (N-DC) (Kaminski et al.,

2001) is defined as follows:

N − DC(t)[chA → chB] =
∑p

i=1abs(Γ(B,A)(i, t))∑p
i=1abs(Γ(:,A)(i, t))
89 (2007) 198–207

where abs(Γ (:,chA)(i, t)) represents the sum of elements
(in absolute value) of Ath column in the coefficient
matrix at time t for lag i, and abs(

∑p
i=1Γ(B,A)(i, t)) rep-

resents the sum of Ath column (in absolute value), Bth
row element in the coefficient matrix at time t for lag
i. In the Granger sense, a non-zero causality means the
existence of non-zero coefficients in the off-diagonal ele-
ments. The sign of the coefficient (positive or negative)
has no direct implication on Granger causality. Further-
more, taking absolute values of the coefficients avoids
the problem of cancellation which might have occurred
in Method 1. Also, the non-normalized direct causality
(DC) is defined as follows:

DC(t)[chA → chB] =
∑p

i=1
abs(Γ(B,A)(i, t))

In this method, we used the non-normalized DC as an
index of causality measure, as it minimizes the effect of
the denominator term for easier interpretation of results.
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