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PROPERTIES OF THE ASCORBATE RADICAL

The ascorbate radical is an important intermediale in reactions involving the antioxidant
function of ascorbate. However, its generation by and reaction with enyymes are also
knowi. In this chapter, we discuss: (1) the physicochemical properties and reactions of the
ascorbate radical, {21 its formation during antioxidant interactions, and (3} the in vivo
detection of ascorbale radical by electron paramagnetic resonance (EPR) spectroscopy us a
promising ool for noninvasive monitering of oxidative stress. But first, we wish to clear up
confusion and offer some suggestions for order to the multitude of deseriptions and
abbreviations used in the literature lor the compounds involved,

Nomenclature

In the Literature there exist many different names and abbreviations for the various species
invalved in the chemistry of vitamin C. For example, SDA, MDAA, AR, AFR. plus others,
hawve been used for the ascorbate radical alone, In this review we use AscH,, AscH™, and
Asc?™ to denote the undisseciated form of ascorbic acid, the physiologically dominant
ascorbate monoanion (pk = 4.1) {1}, and the ascorbate dianion (pK, = 11.79) (1), respec-
tvely: AscH and Asc'™ for the neutral ascorbyl and the anionic ascorbate radicals (with a
pk value of —0.86 (2 only Asc is relevant in biology): DHA for dehydroascorbic and
DHAA for its hydrolyzed form, both products of the two-clectron oxidation of vitamin C
(3} (see Fig. 1 for the structures of each of these species.). Although there is no International
Union of Pure and Applied Chemistry (IUPAC) convention for these abbreviations, we
suggesl that researchers use them because they are simple, vet they convey accurately the
chemical aspects of the species being discussed.
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Figure 1 Tre equilibrium and redox spacies in the ascorbic acid-daehydroosoorio
acid system,

Physicochemical Properties

The most detailed studies on the kinetics of ascorbate and ascorbate radical reactions have
been carried out using pulse radiolysis (4-12) Photosensitized generation of Asc is less
suitable for these types of kinetics studies as it is prone o side reactions diminishing the
yield ol Asc (13,14). The reaction of ascorbate with HOY is quite complex as & result of
formation of intermediates (4,7,12); thus generation of Asc for kinetic studies 15 prefer-
ably done with other electrophilic species such as halogen radical (4,70 or especially azidyl
radicals (153-17).

The Nartional Institute of Standards and Technology (NIST) Solution Kinetics Database
(18} contains guite o number of rate constants for the generation of Asc ™, almaost two-thirds
of them reactions of Ascll™ with peroxyl radicals (19-21), most others with inorganic
radicals. However, the NIST Database has only a limited number of the reactions of AscH™
with phenoxyl radicals (15,17, 22-267; these are included in Table 1. Table 1 also contains
four rare constants for reductive reactions of DHA with Aavonoid aroxyl radicals, leading 1o
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Table 1 Rote Constants for Ascorbote Radical (Asc—) Formation
Radical Substrate pH kM 15l Comment Ref.
Substrate: ascorbic acid (AscH,)
HOr AscH, 1.5 B25x 1% Heerext 4
Br, AscH, 15 L1x 108 4
;- Ascl, 1.5 3.0 108 4
(5CN)y AscH, 1.5 1.0 = 107 4
HO, AscH, 0.3-1 Lo 1 9
S0; AscH, 36 23 108 27
S0, AscH, 36 13x 107 27
CCLOOY AscH, 1.0 1.4 = 107 H,(ViPOH (8:1) 28
CH.OOr AscH, 3.1 40 = 1P 105 DMS0 21
Suhbstrate: ascorbale monoanion (AscH™)
HOr Asct T0 0 128 = 10 Sec text 4
Br,- AscH- 7.0 11 o= 10% 4
L, AscH™ 7.0 1.4 = 108 4
(SCN).~ Ascl 70 6.0 108 4
0y AscH- =80 50=10¢  pH-dep. 0.1-11 9
S0, - AxcH- 6.8 Q2% 108 pH2-12 27
30, AscH- 6.7 1.4 x 108 27
CCLOODr AscH 70 3= 108 HOAPOH (8:1) 2%
CH, OOy AscH- 7.0 1L8x 100 40% DMSO 21
- Tocopheroxyl AscH- ? 1533 » 10°  H,(MiPOH/acelone 3
a-Tocopheroxyl  AscH ? 9.0= 10 CTAB micelles-EPR 22
a-Tocopheroxyl  AscH- =710 30 = 105 DMPC bilayer: LFP 24
Trolox-(r AscH™ 700 145 =107 Also thermodynamic data 24
Trolox-Or AscH™ 85 LI12=1F  Kinetic modeling 17
Hydroxyaceto- AscH™ 9.5 L7 = 1P Also isoe-AscH- 25
phenone-Or
Trp-0r Asctl 70 93 10°  Phosphate buffer 15
VE-16-0Or AncH- 85 35 = 107 Kiretic modeling Unpublished
Fisetin-Or AscH 835 BASx 1M Kinetic modeling 17
Dihydroguer-(F Ascll- 8.5 1.6 % 1%  Kinetic modeling 17
Rutin-C¥ AxcH- 85 125 x 108 17
Quercetin-Or AscH- B3 475 = 108 17
Kaempferol-Or AscH 3 32w 108 17
Luteolin-Cr AscH 8.3 0.9 x |08 17
Substrate: dehydroascorbic
Fisetin-Or DHA g3 6.9 107 Kinetic madeling 17
Rutin-Cr DHA 8.3 1.7 10°  Kinetic modeling 17
Luteolin-( DHA 835  165x 108 Kinetic modeling 17
Quercetin-Or DHA 8.5 1.2 107 Kinetic modeling 17

This 15 the best estimate for the rate constant of ascorbate with the ecopheroxyl radical in a hiological

membrane.
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Table 2 Rate Constants for Formation of Dervatives of Ascorate Rodical from

Dervatives of Ascarbate

Fadical Substrate pH EM-tst Comment Ref.
Substrates; O-methylated derivatives

HOr [-C-metbyl 6.8 25 100 10

HOr 2-0-methyl 35-68 27x10° 10

HCY 3-O-methyl 64-79 301010 10

HOr 2, 3-0-dimethyl 6.8 4.3 = 0% 10

Br.- [-O-methyl 6.8 3.7 = 108 10

Bry 2-0-methyl 35-68 6.1 =108 10

Bry 3-0-methyl 64-79 T3x 10V 10
Substrates: 6-0-galaciosyl derivatives

HO G-{1-ge-gal, 6.5 6.1 = 10° Also decay rates 12

HCOr 6-0-B-gal. 6.8 5.8 = 10% Also decay rates 12

My f-C1-re-gal. 79 IZx P Also decay rates 2

N 6-0-[3-gal. 1.8 2.7 = 107 Also decay rates 2
Substrates: 6-0-fatty acid derivatives

a-Tocopheroxyl  6-Caprylate (8) ? 30= 10 CTAB micelles: stop-flow 22

EPRE
ce-Tocopheroxyl  G-Laurate (12) ? 700 1P CTAR micelles: stop-flow 22
EFR
a-Tocopheroxyl  G-Palmitate (16) ? 300= 108 CTAB micelles: stop-flow 22

EFR

Asc . Listed in Table 2 are the rate constanis for radical formation of various ascorbate
denvatives (10,12,22). When comparing the reactivity of AscH, with that of AscH™, we sge
that in nearly every case ascorbate monoanion demonsirates much greater reactivity for
electron (hydrogen atom) transfer than the diacid (4,9,21,27 28).
Once formed, Asc™ decays relatively slowly. In simple buffered solutions, the nearly
exclusive mode of decay is disproportionation. This somewhat “slow™ decay of Asc'™ may
seem rather unusual, for example, slow compared to decay of HO or RO, According to the
most detailed study by Bielski et al. (7), the stability of Asc'~ is proposed to be due to
obligatory dimer formation as an intermediate during the disproportionation reaction.

&

2 AscT 5 (Ase)?T

i,
(Asc),®~ + HY — AscH™ + DHA

L3
(Asc)’™ = H,O =5 Asc + DHA - OH

Net Reaction: 2 Asc~ + H* =3 AscH- + DHA

(1)

(2)
(3)

i4)
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Thus, in the absence of phosphate {discussed later) we have

AscT
—d% = =2k, [Asc)?

where
. k
Pobs T 4k, (HT + k)

An increase in onic strength has been observed both 1o increase and to decrease the rate of
dismutation of Asc™ {729 However, a most unportant observation is that phosphate
bufter accelerates the dismuotation (7). This acceleration is attributed 1o the ability of various
protonated forms of phosphate o dooate a proton efficiently to the radical dimer, reaction 2,
1115 quite possible that other buffers may similarly act as proton donors, thereby aceelerat-
ing Asc dismutation. Figure 2 shows the pH dependence of the rate of Asc™ dimutation.
At nentral pH, e, pHl approximately 7.4, changes in ionic strength have an insignificant
elfeet on this rate. However, the presence of 43 mM phosphate bulfer shifls this curve up; at
pH 7oA the rate constanl increases by a factor of approximately 1003, from 141 = 10°
LAS w100 (M 171 As anticipated, derivatization of ascorbate alters the rate of der-Asc
decay. Considerable prolongation of the der-Asc™ lifetime was observed when the G-posi-
tion was elongated by saturated lany acids (22)-with a concomitant decrease for the
seavenging of the a-tocopheroxy] radical by the respective parent compounds. In contrast,
G-substitution with c- or B-galuctosy] residues caused a doubling of the decay rate (12).

Pulse-radiolytic studies of ascorbate radical reactions have been mainly concerned with
the reactivity toward redox-active substrates (6,911,171 As shown in Table 3, the reaction

Kope /M g™
—T
o=
[=F]

10°

\
s

104 S —
1 3 5 7 9 N

pH

Figure 2 The colculoted chserved rate constants for the disproporionation of
ascomate mdical as a function of pH. These ooeerved rate constants were dater
riired friorm dota presented in Retf. 7.
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Taole 3 Raote Constants for Ascorbate Rodical (Asc ) Reactions

Reactant rH EM-1sml E¥mVe Rel.
HOy h3-1 Fx I0P 1060 i
0, =50 2.6 = 1F 950 9
0, 8.6 <5 = ¥ —330 &
AsL 74 1.4 = 10F 282 b
Asc ™ in 43 mM phosphare 74 1.2 = 1P 282 7

Ferric/ferrous iron complexes

[Fe(N), I* 700 40x 10# 425 11
Fe(lID-EDTA 7.0 4.0 = 108 117 I1
Cyviochrome ¢ (Fe'™) 74 6.6 x 1P 262 i
Cytochrome by (Fe'~) 7.0 < (P ] 11
Fhenolates
Dopamine 5.4 16 x 1P 7 i
Quercetin-0- 55 155 = 0 308 7
Frsetin-0 85 385 = I0F 214 17
Rutin-C} B3 32 % 108 275 17
Lutenlin-C 5.3 1.55 = 1P 294 17
Kaemplerol-0- 8.3 2R x 1P 209 T
Dihydroguer-0- 8.5 1.2 = 107 23 17
Cvtochrome b, reductase: E-FADH™ 7.0 4.3 = 10 147 1

Aroxy] radicalsfsemiguinones

Luteolin-Cr 83 1.95= 100 200 17
Duercetin-Cy 8.3 145 = 107 308 17
Rutin-(¥ .5 35 x 107 275 17
Dihydragquercenin-C) B5 465 x 107 B3 ¥
Fisetin-Cr 8.3 7.1 % 107 214 17
Kaempferol-Cr 8.5 34 0= 1P 209 17
Cvtochrome b, reductase: E-FAL 7.0 37 = UF —8H 11

Quinoid structures

Fiaetini= 8.3 375w 10F —249 17
Ruotini=C¥) A3 4.1 = 10¢ —=211 17
Cuerceting=( 8.5 1.15 = ¥ —233 17
Lutenlin{=01] B3 1.65 = 107 —115 17

S5 15 the standard one-slectron reduction potential of the reactant al neutral pH.

¥Thas rale constant kolds over a range of 1onic strengths, eg.. =200 mM, but in the absence
of proton deners such as phosphate.

cSen g, 1L
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rates are under strong control of the respective one-electron reduction potentials. The
standard reduction potential of the ascorbate radical—ascorbate couple at pH 7 is + 282 mV
and for the dehydroascorbic acid-ascorbate radical couple 15 — 174 mV (pH-independent)
(30-32). Most of the data in Table 3 were obtained by kinetic modeling of pulse-radiolytic
data, i.e.. calculations of the changes in the kinetics of the formation and decay of the
flavonoid aroxy] radical (the only species that could be observed) by changing the concen-
trations of ascorbate. The fterative optimization program is based on a set of differential
equations that is derived from all the pertinent reactions in the system (17). We have also
investigated this system by observing cither the flavonoid aroxyl or the ascorbate radical by
EPR spectroscopy, Using these approaches we could verify that some of the fast radical-
radical electron-exchange reactions are reversible on the slower time scale of EPR spectros-
copy (Bors W, Michel C. and Stettmaier K, manuscript submitted).

Both AscH™ and Asc™ are considered to be strong reductants {vis-a-vis cytochrome b,
and NADH-cvtochrome b, reductase; Asc' can also be an oxidant) (31). However, asCOr-
bate seems ta be unable to reduce disulfides (33): that inability at first may seem inconsis-
tent with its reducing ability. Howewver, the first step of disulfide reduction (a ons-electron
transfer) would produce the disulfide radical anion. This is a very strong reducing species;
the reduction potential (E*') for the GSSG/GSSG ™ couple 18 —1500 mV: Thus, 1ts forma-
tion is thermodynamically difficult (32).

The weak (UV-visible) absorption spectrum of the ascorbate radical (at pH 6.4 & =
360 nm, &, = 3300 M~ em™1) (7,34) makes it impossible to observe it directly in steady-
state experiments, especially in complex biclogical matenial. Consequently, EPR spectros-
copy of Asc™ is the preferred methed for observing it (33). Detailed EPR studies of Asc
in 1972 (36) and 1973 (37) have accurately established the g-factor (2.00318) and coupling
constants (1.76 G, 0.07 G. 0,19 G for a™, a", and a"%, respectively, in agueous solution)
(36) as well as the effect of different solvents (37). Although proton nuclear magnetic
resonance (MMR) experiments have suggested a bicyelic structure for the ascorbate radical
{38). analogous o that of DHAA (1) of Fig. | the EPR parameters are consistent with the
structure of the ascorbate radical presented in Fig. |. Corroborating the pulse-radiolvtic and
EPE data are quantum mechanical caleulations on the optimized geometries of the various
radical and ionic intermediates ( 39) and reaction pathways with hydroxyl radical (40). Both
the quasi aromaticity of the radical and the lower pK values as compared to those of the
mode]l compound triose reductone are likely explanations of the stability of the ascorbate
radical.

In most biological experiments the actual steady-state concentrations of Asc™ ohserved
are ~1077 M, often 1075=10719 M (41}, These low concentrations dictate that for successful
detection care must be taken to use the optimal EPR. instrument settings, especially for the
ume resolution needed for kinetic for EPR/Asc ™ experiments. We have found that a
modulation amplitude of 0.6-0.7 G produces the greatest EPR signal height for Asc (42
When using a TM cavity we also have observed that a nominal microwave power of =4
mW also maximizes the signal height for Ase'™ in room temperature aqueous solutions
42). However, saturation effects begin at =16 mW nominal power. Thus, 1f absclute
concentrations of Asc™ are needed, then standardization and quantitation calculations must
take into account these possible saturation effects.

The extreme sensitivity of EPR detection of Asc™ coupled with the efficiency of metal
catalysis of ascorbate oxidaton have been used to estimate iron concentrations in reagents
in the range of 1-1000 nM (41). Thus, the Asc™ can provide investigators with information
on several aspects of a system. But one must always keep in mind that what is being
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monitored is [Asc™], . A kinetic argument has been made that the dominant route of Ase’
decay will usually be via dispropartionation (43 ). However, the relative stability of Asc™,
compared to that of radicals such as HCY and RO, gives a time resolution suitable for kinetic
EPR spectroscopy (14,22.44.45.46).

Enzymology

The unusual stability of the ascorbate radical has apparently dictated that enzymatic
svslems are required 1o reduce the potential transient accumulation of Asc~. An enzyme,
NADH:monodehydroascorbate reductase (EC 1.6.5.4), has apparently evolved for that
purpose. It is quite common in plants (47-31), where it plays a major role in stress-related
responses. In animal organs it exists predominantly in the retina (52,53). Other sources
indicate that the enzyme functions as a transmembrane electron-carrier system (34.35);
e.£.. in mitochondria and chromaffin granules, its activity depends on the thiol-disulfide
redox balance (36). Recently, the presence of a soluble ascorbate radical reductase, which
differs from the known membrane-bound enzyme, has been reported (37). In addition, a
mitochondrial enzyme has been described. which has distinet properties such as molecular
welght and catalvtic parameters (38). In a timely report Kobayashi et al. (39) have
determined the absolute rate constant of the cucumber ascorbate radical reductase at pH
74w be 2.6 = 108 M~ 15~ The fact that in animal tissues this enzyme is far less ubiquitous
than in plant tissues has been explained by the predominant role of the glutathione-
dependent dehydroascorbate reductase enzyvme (EC 1.E.5.13 in controlling the ascorbate—
dehydroascorbic redox balance (60). Furthermore, L-DHAA appears w be the major
transport form ef this vitamin across membranes (61), Thus, these enzyvmes play a major
role in reducing DHAA to AscH ™. thereby keeping the antioxidant function of vitamin C
operaling al maximum efficiency.

The fact that several enzymes aside from ascorbate oxidase (47.62) also take advantage
of the univalent redox cyeling of ascorbate, .., generate ascorbate radicals during their
turnover, for example, ascorbate peroxidase (EC LILLIL {48,63.64), dopamine-(3-
hydroxylase (EC 1.14.17.1) (62,63), and ascorbate-cywochrome b, reductase (EC 1.10.2.1)
(66) indicates that “nature” considers this cycle as somewhat innocuous and not prone 1o
severely toxic side reactions.

GENERATIOMN AND REACTIVITY OF Asc -
IN ANTIOXIDANT INTERACTIONS

Despite the fact that the original proposal of Szent-Gyérgyi and colleagues of certain
flavonoids protecting the antiscorbutic effects of ascorbic acid {67-69) did not mention the
involvement of ascorbate radicals. a recent study on favoncid-ascorbate interactions by
pulse radiolysis and kinetic modeling confirmed this intermediate as an essential link (17).
This study, incidentally, was instigated by another observation of Szent-Gyérgyi and
colleagues (7)), where they showed a prooxidant and cylotoxic effect of ascorbate involv-
ing univalent reduction ol quinones and & concomitant formation of Asc by EPR spectros-
copy. Because these reactions are evidently controlled by the respective redox potentials,
the cytotoxicity of moest biologically relevant quinones (e.g., antibiotics) may be partially
explained by such reactions, in addition to potential futile redox cycling generating super-
oxide anion (7]1-73),

Quite recently, a report on the formation of Asc™ by the reaction of ascorhate with
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peroxynitrite, the presumed cytotoxic product of N0 reacting with O, provided 2
potential link between these biologically relevant radicals and the vitamin C antioxidant
systems (74-=760).

AscH + O=MNOOH — Aswe' — 'Nﬂz + HE{-} 5
.""I.SL-:.[! + '\!E}_' — AL+ N{j.’ fﬁ]
whers

ko, for reaction 5 at pH 74 15 47 M Ts7 1T

Phenols

One of the most important and nlensely Investigated reactions with ascorbate is the
reduction of tocopheroxy] radicals forming Asc

Ascll = o-TO — Ase + o TOH )

First observed in a pulse-radiclytic study (230 and since conlirmed (2224 77-80), rare
canstants for this reaction under various conditions (22-24) as well as EPR evidence of this
redox eveling (22.77.79,80) have been reported; see Tuble 1. Even thoush superior ana-
logues of a-locopherol have been chemically synthesized (81-83) and lipophilic deriva-
tives of ascorbate can be nearly as effective [with only a minor decresse in the rate constant
with oi-tocopheroxy] radical with lengthening of the Ch-side chain) (22), the potential
biological importance ol reaction 7 must not be underestimated,

Because the tocopheroxy] radical is & good reactant for ascorbare, it is easily hypothe-
sized that other phenoxy] radicals could also be reduced with the concomitant formation of
Asc This was first demonstrated by Schuler (34 and since corroborated Tor a number of
pharmacologically relevant phenols (84-89), such as probucol (B6,87) and etoposide
(VP-16) (88,890 Yet the fact that certain p- (00 and o-semigquinones (23) are not reduced
by ascorbate again points o the impoerlance of the respective redox potentials of the radical
species invalved in controlling the reaction.

Thiols

A recurrent prablem in the understanding of the interrelationships of biological antioxida-
Live systems 15 the question of the extent to which the glutathione and the ascorbate redox
cyeling system may act synergistically in direct chemical reactions (901, in addition 1o the
known interaction in their respective enzyme svslems (36,63) Despite evidence to the
contrary (893, 1L seems 1o be reasonable to expect such interaction, vel it may be difficult 1o
prove as the primary link: the thivl radical is hard to observe directly and has an altogether
too short lifetime, Furthermore, with dihydrolipeic acid (DHLA) as a recently popular
alternative thiol reductant (88897, the thiv] radical, as a free radical, never actually occours
as cyclization o the radical disullide anion is an extremely rapid intramolecular process
(= 1w 107 s~ {unpublished data from our laboratory). Whether this distinction berween
dihydrolipoic acid { DHLAY and reduced glutathions (GSH) is also the basis of the additive
reducing effect of Ascll™ and GSH toward the cloposide phenoxyl radical (33)—whereas
DHLA and AscH™ do show a synergistic effect with both etoposide (BE) and probucol
phenoayl radicals (86— is the basis of ongoing kinetic studies in our laboratory. Since the
thiols are capable of reducing the ctopeside () but not the probucol phenoxyl radical (367,
wi are interested in whether this reactivity is kinetically or thermodynamically controlled,




B4 Bors and Buetiner

ASCORBATE RADICALS IN PLANTS

The ascorbate radical was lirst ohserved by FPR spectroscopy over three decades ago.
Since then interest in Asc'™ has grown. In plants and plant tissue the first reports of altered
Asc levels from environmental stress appeared in the early 19905 (91,927 Plants have an
extensive system to handle ascorbate radicals (93,943 in addition to the redox cyveling
system mentioned (47-51), In additon 1o Ase [ormation in response to oxidative stress
(47 92,943 or during wounding (30}, they may actually use Asc formalion as a signaling
event in development (951, Because both the univalent and hivalent redox cveles of
ascorbate are highly intertwined in plants, it augurs well 1o further explore the EPR
technique for such studies.

ASCORBATE RADICAL EPR INTENSITY AS A MEASURE
OF OXIDATIVE STRESS

The details of the EPR spectrum of Asc' inaqueous solutions were understood in 1972073
(36,37 and soon thereafter studies of Asc™ in cell cultures and animal orzans were
initiated (960,971 However, almost bwo decades passed before EPR spectroscopy of Asc
became an established method in cell and animal studies. 11 is now recognized that the
monitering of Asc' [ormation by EPR is an excellent marker of oxidative stress (95-102).
Buettner and Jurkiewicz have provided thermoedynamic and kinetic arguments for the use
of [Ase'™ || as a marker of oxidative stress (99), They have detailed some of the experimen-
tal considerations needed o allow o reasonahle interpretation of the EPR data (41 99 102},
In brief, an increase in [Asc | correlates with an increase in oxidative stress, However,
be able 1o make such an inference one must control pH and ascorbate concentration in the
system. In addition, changes in oxyvgen levels as well as in catalytic metal activity must be
considered. Examples of using the EPE Asc signal to gain information on various
biological systems [ollow.®

Cell Cultures

The study of Asc o conjunction with cell cultures is proceeding on two fTonts: (1) use of
changes in [Asc ] 1o reflect oxadative stress and (2] the possible involvement of Asc
m cell signaling and cell development,

Owidative Stress

These investigations have used EPR o monitor [Asc ] when the cell cultures are exposed
o different siresses, The cells have ranged from isolated rat hepatocvies (981, to Ehrlich
ascites tumor cells (1033, LIZI0 muorine leukemia cells (44), and even simple thyroid
microsomes {104} Following the change in [Asc™], with time via kinetic EPR spectros-
copy can provide very useful information. Figure 3 provides an example of the change in
[Ase [, observed in oo whole cell incubation of LIZI0 murine leokemia cells (44
Edelsfosineg, an ether lipid anticancer drug that is membrane-active, is introduced at the
arreva. Within & minute we observe a dramatic increase in oxidative flux as reflected by a
rapid rise in [Asc'] . These results demonstrate the rapid response of the cells to this

FA recent study suggests that conjugated eytochrome ¢, which is net a substeate for either cylochrome ¢ reductase
ar cytochrome ¢ oxidase and also is not reduced by 0,7, can be used indirectly o monitor Asc levels in the
circulation of rats (133)
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Figure 3 Edeliosine increases oxidative stress in L1210 murine leukemia cell suspen-
sions as reflected by changes in [Asc -], (44). Docosahexaenonic acld enrichad
L1210 calls (5 = 104 calls/ml) wers incubated in room temparature 0.9% NaCl solution
that contained 20 pM Fe?+ and 100 wM cscorbate. Edelfosine 40 p M. a membrane-
active ether lipid anticancer drug, was addead at the arrow. Viehicle alons produced
no significant change in [(Asc -], EFR spectra were collected with a Bruker ESP 300
sleciron spin resonance speciromatar,

oxidative stress. The fall of [Asc'™]__ indicates a depletion of some necessary component:
oxidizable substrate, ascorbate, or perhaps oxygen. Supporting experiments suggest oxidiz-
able membrane lipids are being depleted (44,

Asc— and Cell Signaling

Ascorbate radical has been proposed 1o activate transplasma membrane electron transport
systems (95,105-101), Cell-impermeable oxidants that can accept electrons from this
electron transport system appear to stimulate cell growth (105). Asc'™ 15 poorly taken up by
cells compared o AscH- . Thus, Asc appears [0 serve as an oxidant that can act as an
external electron acceptor. AscH™ is regenerated, but cell “signaling” can also occur,
resulting in stimulated growth. Data that have been presented sugeest this to be the case for
HL-60 cells (105,109 and onion root menstems (107,108), two quite different eukaryotic
cells,

Body Fluids

It would be ideal to learn something about free radical oxidations from body fluids, When
freshly extracted fluids are examined by EPR, Asc'™ is quite likely observed. Fresh whole
blood gives a very weak Asc EPR signal (1109, However, when plasma from this same
blood 15 examined, a much stronger. easily detectable signal is observed (79.101,111-116).
Fresh serum also yields detectable Asc™ (111117-119). The much lower |Asc™™ |, seen in
whole blood compared 1o plasma or serum undoubtedly results from the ability of red cells
to reduce Asc™ . There have been successes in gaining information on the “oxidative state”
of plasma. However, careful attention to controls and most importantly the level of
ascorbate present must be known (99,1023, Other fluids also have Asc™ present that may
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provide information. Ase' in synovial fluid has been used to indicate the presence of
catalytic metals (1200, Asc™ has been obhserved in semen and may provide an indication of
sperm robustness (1210 Asc™ in cow’s milk has potential to indicate the state of “fresh-
ness” (122,123} In a related application, Asc'™ has been used to study potential antioxidant
components of infant formulas (123 )

Inall these examples, it is clear that to gain information from Asc | the mechanisms by
which it mav he formed must be understood.

Perfused Tissue/Organs

Changes in ascorbate radical EPR intensity have been observed when rabbit aorta or iliac
artery has been subjected w changes in flow (115} These results implied that the endo-
thelinm was the principal scurce of ow-related free radical production. This radical
production appears 1o be another example of the beneficial effects of physiological free
radical production.

When iselated rat hearts were subjected 1w ischemic reperfusion episodes, an increased
level of Asc™ was observed in the perfusion buffer (1123, The transient increase com-
menced on reperfusion and was dissipated wsually within 30 min. These data were inter-
preted to indicute that at reperfusion ascorbute, probably mostly as DHAA, was released
from the tissue, resulting in an increase in radical production. In similar experiments with
isolated rat liver, an increase in Asc'™ has also been observed on reperfusion after ischemia
(124). Thus. Asc'™ has potential to provide information about oxidative events during
ischemiz—reperfusion episodes.

Care must be exercised in designing and interpreting all experiments where perfusion
buffers are used as it has heen clearly shown that the heart can extract the adventitions
metals present in the buffer. These metals, particularly copper, will alter the experimental
resilts (1250 1 15 hest to remove these melals from all boffers used so that the hest
interpretation of the data is possible (126),

Whaole Animals

Too approaches have heen used to gain information from Ase™ about oxidalive cvents in
whole animals, Both are ex vive approaches in which fluid is routed from the body via
tubing tw the EPR for examination,

Mori et al. (127 128) have devised a method to route blood from a femoral artery of a rat
through the EPR spectrometer and return it to the animal. This approach monitors Asc in
whole bleed. The researchers observed that [Asc'™] | increases, as predicled, when ascor-
bate or iron-citrate 15 infused into the animal,

Al this same time, Sharma et al. (129) developed a similar system to circulate coronary
venous blood from dogs through a flat cell in an EPR cavity and return it to the animal. An
intravenous infusion pump is used to control the Aow rate so that the transit time from hearl
to LPR 15 constant. These investigators have observed that [Asc |, 18 increased on infusion
af ascorbate or when metal-mediated oxidative stress is induced by infusion of iron or
copper salts,

Of special interest is the observation that infusion of sodium nitroprusside, an antihyper-
tensive drog, produced o dramatic rise in [Ase | consistent with the initiation of oxidative
siress by this compound, Myocardial ischemia reperfusion experiments demonstrated thal
on reperfusion after a 20 min ischemic episode the [Ase ™) in the blood [rom the coronary
vein increased. This increase was blunted by superoxide dismutase—catalase and by metal
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chelators, sl consistent with radical formation on recxygenation ol the ischemic myo-
cardinm.

Still another approach vses microdialysis o produce an EPR sample for detection of
Ase (130-1320 Microdialysis tubing is placed in the region of interest. The low-
molecular-weight ascorbate-system species diffuse into the solution in the tubing and can
then be examined by EPR. This approach has been used 1o monitor oxidative stress in the
brain of rats. As predicled, the presence of iron salts or “202 increased the Ase concentra-
tion in the dialvsate, Other stresses such as cold injury also produced increases in Asc
indicating the potential of this system 1o prove oxidative events.

Humans

[nvestigations on the use of ascorbate radical to probe for human health status are exceed-
ingly limited. Early work used lyphilized fissue samples for EPR cxamination (96,973, In
these preparations, the LPR signals observed were those of the immobilized Asc . Most
interesting was the ohservation of a very strong Asc EPR signal from lyphilized erythro-
cytes of patients with acute lymphatic leukemia. A completely different EPR spectrum was
obtained from erythrocytes of paticols with acute myeloid leukemia, The unique spectrum
obtained from acute Iymphatic leukemia patients was never observed in erythrocytes from
patients with other types of leukemia or other diseases of the hemalopoictic or lymphatic
system.

Recent work with human plasma ascorbate radical has as o zoal probing for oxidative
stress (1120160 In cardiae ischemia- reperfusion the depletion of plasma ascorbate was
monitored via Ase using EPR (112), This study suggests that transient changes in plasma
ascorbate stutus induced during cardiac arrest and reperfusion may be a useful clinical
marker for oxidative stress This change in ascorbate is reflected in the plasma [Ase |

Another study of Asc™ in human plasma was dirceted toward monitoring intensive
care patients with sepsis (116). The study found that sepsis patients have significantly
more catalytic iron in serum than healthy control persons, while ascorbate in sepsis paticnts
was less than in control patients, Yer [Asc [ was oearly the same. However, a | g bolus
injection of ascorbate W sepsis patients resulted in only & minor increase in [Ase | and
plasma ascorbate, as compared 1o those ol control patients. These results sugpgest thar
guite diflerent ascorbate metabolism ocours in the sepsis patient. How o imerpret this
with respect to improvement of patient health is not yet known, but it suggests thal
quite & difference in ascorbate metabolism exists between healthy control and sepsis
paticnts.

Skin

Ome of the most informative uses of Asc™ has been 1o studies of skin. The first investigation
of Asc in this organ (SEH-1 hairless moose) demaonstrated that UY light increased
endogenous [Asc ] and that 1o skin treated with chlorpromazine, a photoactive drug, UV
light produced an even greater increase in [Asc | (133). In complementary experiments
using the EPR spin trapping agent a-(d-pyridy] l-oxide)-N-ter-butyInitrone (POBN) ap-
plied to the skin, a carbon-centered radical presumably from lipid peroxidation products
was detected. This radical signal was blunted when an iron chelating agent {Desferal) was
applied prier to UY expesure (134). These results demonstrate that UY light does indeed
produce free radicals in skin and that ivon present in the skin may exacerbate the free radical
oxidative stress.
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[ membrane-derived free radicals are involved in the deleterious elfects of UV lizht on
skin, then tocopheral-based antioxidants may reduce this damage. Indeed, Jurkiewicz et al.
(135} in the SKH-1 mouse model have used EPR detection of Asc™ as well as POBN spin
trapping o demoensirale that opical application of tocopherol sorbate reduces UV light-
mediated free radical formation, But most exciting is that they have also demonstrated that
tocopherol sorbate protects against photoaging and UV light—induced skin tumor forma-
tien. This study 15 the frst actually w correlate photoaging and UV light—induced tumor
formation with free radical production, Thus, the development of effective antioxidants and
the methods w deliver them e the skin Tor protection against U light s well justified,

Tumamens and Davies (1367 have used these technigues to demonstrate that application of
organic peroxides to murine skin results in an increase in the endogenous Asc EPR signal.
This radicul formation requires that the peroxide penetrates the skin stratum cormeum,
These observations are the first steps needed to correlate peroxide-induced [ree radical
formation with its deleterious effects in skin tissoe.

SUMMARY

Asc s both thermodynamically and kinetically a very domesticated free radical. 11 is a pi
radical with low reactivity, Thus, it is an ideal radical to he formed as a product when
ascorbate, a denor antiosidant, reacts worepatr dangerously oxidizing radicals, such as
peroxyl and alkoxyl radicals, and less dangerous, but potentially bothersome, phenolic
radicals, such as those from flavoencids and tocopherol, Tts low reactivity resulis in a
“relatively™ long lifetime, making it an ideal marker for ongoing free radical oxidations in
selutions, cells, tissues, and even whole organisms, Perhaps one of the most powerful
aspects ol 10s use as o marker of oxidative stress s that it can provide information on the
system in real tome (99,102,
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