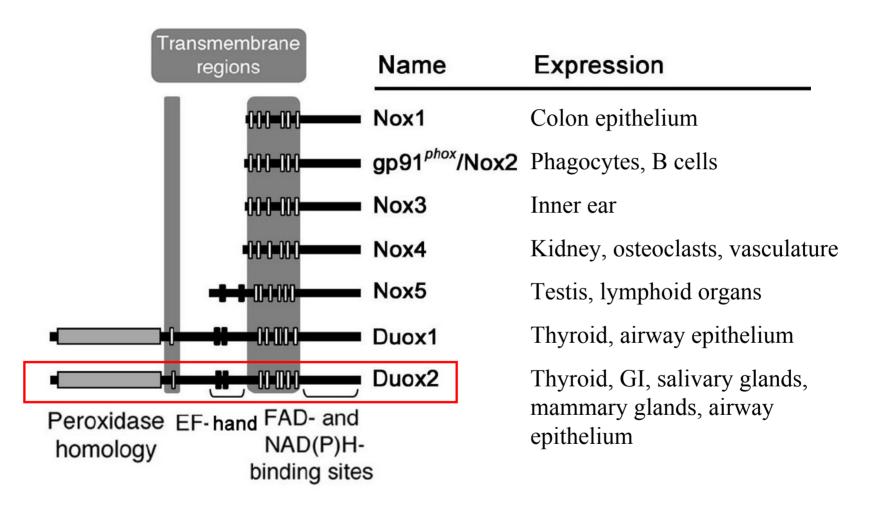
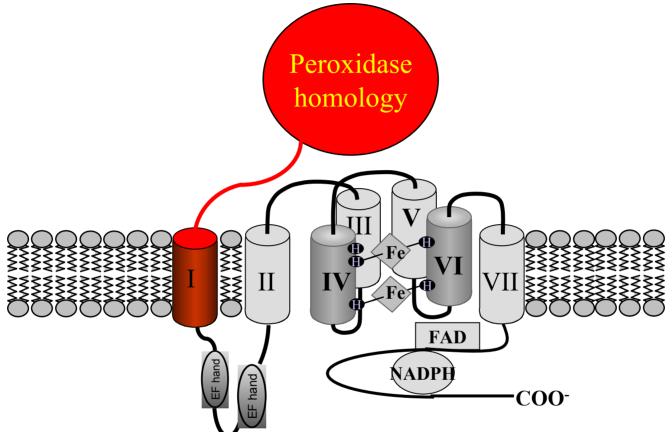
Dual-Domain Oxidase 2 (Duox2): A Non-phagocytic NADPH Oxidase Homologue

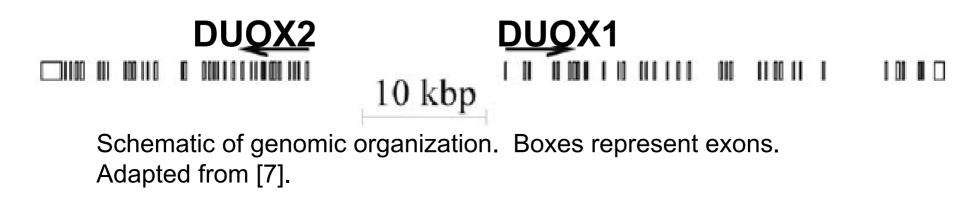

Joshua Eastvold

University of Iowa Roy J. and Lucille A. Carver College of Medicine Anatomy and Cell Biology Medical Science Training Program


Background

- Phagocytes are vital players in innate immunity, largely due to their ability to generate antimicrobial ROS at the phagocyte membrane.
- The membrane constituent responsible for ROS generation in phagocytes is NADPH oxidase 2 (NOX2, gp91^{phox})
- Recently, non-phagocytic NOX homologues (NOX1, NOX3, NOX4, NOX5, Duox1, Duox2) have been identified.
- These NOX homologues use electrons from NADPH to generate superoxide, which dismutes to form H_2O_2 .
- However, the biological importance of the NOX proteins is poorly understood.
- This presentation will discuss the NOX protein <u>Dual</u>domain <u>Ox</u>idase <u>2</u> (Duox2).

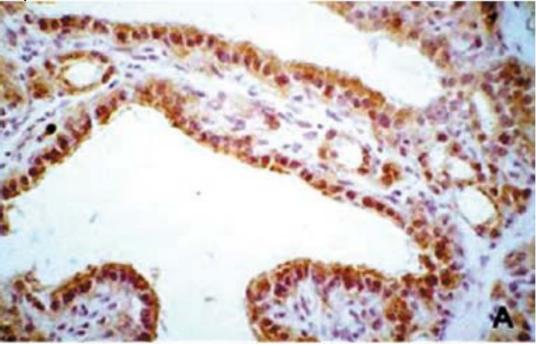
The NADPH Oxidase (NOX) Family


Structure of Duox2

- 7 putative transmembrane domains
- 4 NADPH-binding domains
- 1 FAD-binding domain
- 2 EF hand motifs (predicted to bind Ca²+)
- Peroxidase domain

Genomic Characterization

- The Duox2 gene is found on chromosome 15q15, arranged in a head to head configuration with Duox1 (another NOX homologue)
- Contains 34 exons spanning 21.5 kb

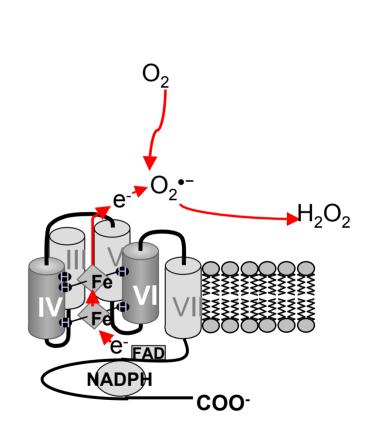


Message

- mRNA is 6126 nt
- Expressed predominantly in the thyroid, gastrointestinal epithelium, respiratory epithelium, mammary glands, salivary glands, and prostate.
- Expression only characterized in thyroid tissues, in which cAMP induced upregulation

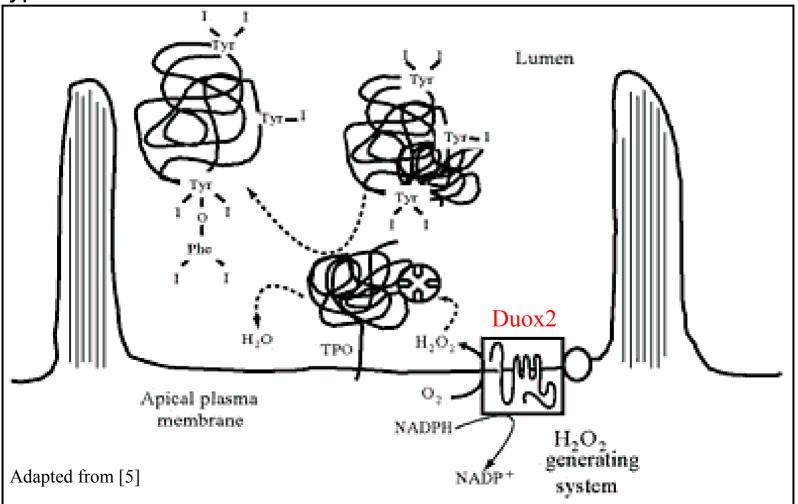
Protein

- 1548 aa
- 2 glycosylation states: (i) fully mature glycosylated form (190 kDa) expressed at apical membrane, and (ii) the high mannose glycosylated immature form expressed exclusively within the ER (180 kDa)
- In thyroid tissues, Duox2 is localized to the apical border of thyrocytes (see below)

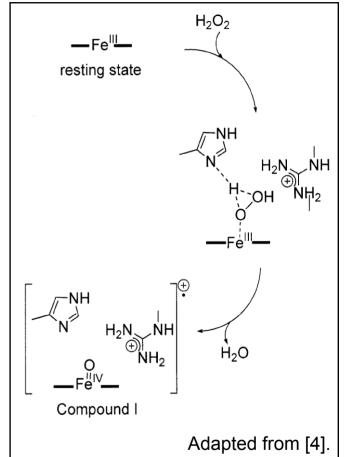

Duox2 is expressed at the apical membranes of thyrocytes

Duox2 Biochemistry

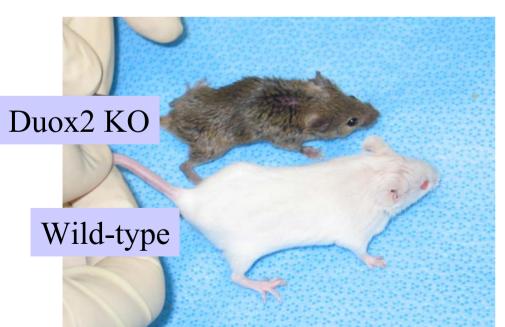
- Thyrocyte membrane particulates have been known to possess an NADPH-dependent H₂O₂-generating system [2], whose activity required Ca²⁺ in micromolar concentrations [3].
- Ca²⁺ suggested to induce a conformational change, allowing NADPH access to oxidase active site [4].
- Based on functional similarities of H₂O₂ generation in the thyroid and phagocyte system, this machinery was determined to be Duox2 (& Duox1).

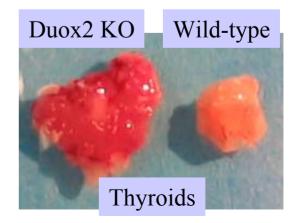

Mechanism of H₂O₂ Production

- The mechanism of H₂O₂ production is poorly characterized, but is predicted to proceed through superoxide.
- The NOX system (e.g., Nox2) catalyzes $1e^{-}$ transfers from NADPH \rightarrow FAD \rightarrow heme group \rightarrow molecular O_2 , generating superoxide ($O_2^{\bullet^{-}}$).
- Duox2 is thought to hold this superoxide intermediate within the active site until another e⁻ is transferred, thus generating H₂O₂.


Duox2 Role in vivo

• The presence of H_2O_2 at the apical border of thyrocytes has been known for years to be required for thyroid hormone synthesis. •However, the source of the H_2O_2 has remained elusive. It is hypothesized that Duox2 serves this function.


Role of H_2O_2 in thyroid hormone synthesis


- 1. H_2O_2 reacts with TPO to form Compound I, in which one of the oxidizing equivalents of H_2O_2 is stored on the iron as an Fe(IV) oxyferryl moiety and the other on the porphyrin ring as a π radical cation. The π radical cation can be transferred to a protein side chain (see figure).
- Compound I oxidizes iodide (I-) to form iodine (I⁰), which can react with tyrosyl residues of thyroglobulin forming iodotyrosines.
- 3. H2O2 is also necessary for the coupling of iodotyrosyl residues to form thyroid hormones.

Evidence That Duox2 is Involved in Thyroid Hormone Synthesis

- Duox2 knockout mice support the role for Duox2 in thyroid hormone synthesis.
- Mice deficient in Duox2 exhibit decreased growth (left figure) and goiterous thyroids (right figure). Both are highly suggestive of hypothyroidism
- Duox2-deficient mice exhibited markedly lower levels of thyroid hormones (free thyroxine (T₄) and total T₄) [6].

Summary

- Duox2, a NADPH oxidase homologue, is required for thyroid hormone synthesis.
- Its activity requires both Ca²⁺ and NADPH.
- The production of H_2O_2 is hypothesized to proceed through a superoxide intermediate.
- Its role in non-thyroid tissues remains to be determined.

References

- 1. Takeya R, Sumimoto H. (2003) Molecular mechanism for activation of superoxide-producing NADPH oxidases. *Mol Cells*. **16(3)**: 271-277.
- 2. Virion A, Pommier J. (1984) NADPH-dependent H2O2 generation and peroxidase activity in thyroid particular fraction. *Mol Cell Endocrinol*. **36(1-2)**: 95-105.
- 3. Deme D, Pommier J. (1985) NADPH-dependent generation of H2O2 in a thyroid particulate fraction requires Ca2+. *FEBS Lett.* **186(1):** 107-110.
- Colas C, Ortiz de Montellano PR. (2003) Autocatalytic radical reactions in physiological prosthetic heme modification. *Chem Rev.* 103: 2305-2332.
- 5. www.thyroidmanager.org. Visited 3-29-05.
- 6. Unpublished data. Eastvold JS, Banfi B. (2005).
- Pachucki J, Wang D, Christophe D, Miot F. (2004) Structural and functional chracterization of the two human ThOX/Duox genes and their 5'-flanking regions. *Mol Cell Endocrin.* 214: 53-62.